

Übungen zur Akustik - Lösungen Serie 6

- 1. Vorstellungen mit elementaren Funktionen
 - (a), (b) & (c) Hier die gefüllte Tabelle und die Funktionsgraphen:

Funktion	$f(x) = \frac{1}{10} x^2$	$g(x) = \sqrt{x}$	$h(x) = \sin(4\pi x)$	$i(x) = e^{-\frac{x^2}{8}}$
Funktionstyp?	Quadratische Funktion	Wurzelfunktion	Sinusfunktion	Gaussche Glockenfunktion
Symmetrie?	gerade	keine	ungerade	gerade
Charakteristika	Parabel!	halbe, "gekippte" Parabel	2π -Periodizität Schwingung zw. ± 1	"Glocke"

- (d) & (e) Zur Überprüfung gibt es auf agertsch.ch das GeoGebra-File mit allen Funktionsgraphen, die man sich gezielt anzeigen lassen kann.
- 2. Envelopen von Sinusschwingungen
 - (a) Die Envelope ist der Graph einer selber von der Zeit t abhängigen Funktion A(t). Wird eine Sinusschwingung mit dieser Funktion als Vorfaktor versehen, so übernimmt A(x) die Rolle einer zeitabhängigen Amplitude.
 - Das bedeutet, der Graph der Sinusschwingung schwingt zwischen den Graphen von A(t) und -A(t) auf und ab. Das ist mitunter so, weil die Sinusfunktion selber Werte zwischen -1 und +1 annimmt.
 - (b) Das Resultat ist natürlich die Abbildung 13 auf Seite 19 im Skript...
 - (c) Die Schallwelle mit dem folgenden Schalldruckmuster dürfte einem Summ- oder Pfeifton entsprechen, der ständig lauter und leiser wird. Die Frequenz dieses An- und Abschwellens ist die doppelte Frequenz der cosinusförmigen Envelopenfunktion.

