
Zweidimensionale QM – das Teilchen im Topf

1 Wellenfunktion, Potential und Schrödinger-Gleichung im R
2

Ort x → (x, y): Punkt P im zweidimensionalen Raum R
2 ⇒ Koordinatentripel (x, y) gibt an, wie

weit vom Ursprung aus in x- und in y-Richtung, um zu P zu gelangen.

Potential V (x) → V (x, y): Zu jedem Ort (x, y) gehört eine potentielle Energie V (x, y, z).

Wellenfunktion Ψ(x, t) → Ψ(x, y, t): Auch Wellenfunktion Ψ ist zweidimensional, hängt nun also
von drei Variablen x, y und t ab. |Ψ(x, y, t)|2 beschreibt zu jedem Zeitpunkt t die Wahrscheinlich-
keitsdichte resp. Aufenthaltswahrscheinlichkeit des Teilchens am Ort (x, y). Genauer:

Wahrsch. das Tl. zur Zeit t innerhalb der Fläche A zu finden =

∫

A
|Ψ(x, y, t)|2 dA

=

∫ y2

y1

∫ x2

x1

|Ψ(x, y, t)|2 dx dy

Schrödinger-Gleichung für Ψ(x, y, t): Gleichung muss auf zwei Dimensionen erweitert werden. Nicht
weiter schwierig! Sieht wie folgt aus:
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∂y2
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Es kommt lediglich die partielle zweite Ableitung nach y hinzu!

Unter Verwendung des Laplace-Operators ∆ := ∂2

∂x2
+ ∂2

∂y2
schreiben wir kürzer:

Zweidimensionale Schrödinger-Gleichung: i~
∂Ψ

∂t
= −

~
2

2m
∆Ψ + V Ψ (1)

2 Variablenseparation wie gehabt!

Stationäres Potential: Das Potential sei zeitunabhängig, also V = V (x, y).

Separationsansatz: Wir gehen zunächst von separierbaren Lösungen aus:

Ψ(x, y, t) = ϕ(t) · ψ(x, y) (2)

Wellenfunktion Ψ(x, y, t) ist Produkt aus nur vom Ort (x, y) abhängigen Anteil ψ(x, y) und nur
von der Zeit t abhängigen Anteil ϕ(t).

Einsetzen in die Schrödinger-Gleichung: Bearbeite Schrödinger-Gleichung mittels Separationsansatz:

i~
∂Ψ

∂t
= −

~
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2m
∆Ψ + V Ψ ⇒ i~ψ

dϕ

dt
= −

~
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2m
ϕ∆ψ + V ψ ϕ

Division durch Ψ = ϕψ ergibt:

i~
1

ϕ

dϕ
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= −

~
2

2m

1

ψ
∆ψ + V

!
= E

Da die linke Seite i~ 1
ϕ

dϕ
dt nur von t und die rechte Seite − ~

2

2m
1
ψ ∆ψ + V nur von (x, y) abhängig

ist, müssen beide Seiten konstant sein, sonst können sie unmöglich für beliebige Werte von t resp.
von (x, y) stets übereinstimmen! ⇒ zwei Gleichungen zur Separationskonstante E:
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∆ψ + V = E
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Lösung der Zeitgleichung: Differentialgleichung für zeitabhängigen Anteil ϕ(t) ist rasch gelöst:

i~
1

ϕ

dϕ

dt
= E ⇒

dϕ

dt
= −

iE

~
ϕ ⇒ ϕ(t) = A · e−iEt/~

Praktisch: |eiα| = 1 ⇒ setze A = 1 und überlasse damit die Normierung der Wellenfunktion
Ψ(x, y, t) dem ortsabhängigen Anteil ψ(x, y).

Zeitkomponente der Wellenfunktion zu E: ϕ(t) = e−iEt/~ (3)

Zeitunabhängige Schrödinger-Gleichung: Multipliziere zeitunabhängige Gleichung mit ψ:

3D zeitunabhängige Schrödinger-Gleichung: −
~
2

2m
∆ψ + V ψ = Eψ (4)

Notation mit Hamilton-Operator: Im zweidimensionalen ist der Hamilton-Operator Ĥ (= Operator
zur Gesamtenergie E des Teilchens) gegeben durch:

Ĥ = −
~
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2m
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Damit lässt sich die zeitunabhängige Schrödinger-Gleichung verkürzt schreiben:

Kurzform zeitunabhängige Schrödinger-Gleichung: Ĥψ = Eψ (5)

⇒ Separationskonstante E weist die Dimension einer Energie auf!

3 Das zweidimensionale Kastenpotential

“Im Topf eingesperrt”: Betrachte ein Teilchen in einer rechteckigen Fläche mit Länge Lx und Breite
Ly. Die Wände seien “hart”, während sich das Teilchen im Innenraum frei bewegen kann. Das
bedeutet, für das nicht von der Zeit t abhängige Potential V soll gelten:

V (x, y) =

{
0 für 0 < x < Lx und 0 < y < Ly

+∞ sonst

Zweite Variablenseparation: In obigen zwei Bedingungen für V (x, y) = 0 steckt die “Symmetrie” des
Potentials. Die zwei Ortskoordinaten x und y sind bei der Überprüfung dieser Bedingungen separat
zu betrachten. Sie sind in gewisser Weise voneinander unabhängig.

Dies legt folgende neuerliche Variablenseparation der örtlichen Wellenfunktion ψ(x, y) nahe:

Zweite Variablenseparation: ψ(x, y) = F (x) ·G(y) (6)

Wir gehen also davon aus, dass sich ψ(x, y) als Produkt zweier voneinander unabhängiger Funktion
F (x) und G(y) schreiben lässt, die je nur von einer einzigen Ortskoordinate abhängen.

Anwendung: Wir setzen diesen zweiten Separationsansatz (6) in die zeitunabhängige Schrödinger-
Gleichung (4) ein (V = 0 im Innern des Topfs):
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Division durch ψ = FG ergibt:
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Neue Energie-Separationskonstanten: Jedes der zwei Glieder auf der linken Gleichungsseite hängt
nur von einer der beiden Ortskoordinaten x und y ab. Diese sind aber unabhängig voneinander
variabel. Trotzdem muss sich auf der rechten Seite ein konstanter Wert E ergeben. Das kann nur
bedeuten, dass jedes Glied auf der linken Gleichungsseite für sich alleine konstant ist. Es ergeben
sich somit zwei neue Energie-Separationskonstanten Ex und Ey:

−
~
2

2m

1
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d2F
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= Ex und −

~
2

2m
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G

d2G
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Nun ist die Gesamtenergie E des Zustandes die Summe aus zwei Teilenergien, die je zu einer
Raumrichtung gehören:

Ex + Ey = E (7)

Interpretation: Da es im Innern des Topfs keine potentielle Energie gibt (V = 0), setzt sich
die Gesamtenergie E aus den zwei kinetischen Energien in den verschiedenen Raumrichtungen
zusammen.

Neue Gleichungen: Aus der zeitunabhängigen, zweidimensionalen Schrödinger-Gleichung erhalten wir
also zwei Differentialgleichungen, eine für jede der beiden Raumrichtungen:

−
~
2

2m

d2F

dx2
= ExF und −

~
2

2m

d2G

dy2
= EyG (8)

Die Strukturen sind identisch!⇒Wir brauchen nur eine Gleichung zu lösen. Die Lösung der anderen
Gleichung sieht gleich aus.

Lösung in einer Raumdimension: Betrachte x-Gleichung:

−
~
2

2m

d2F

dx2
= ExF ⇒

d2F

dx2
= −k2xF mit k2x =

2mEx
~2

Lineare, homogene Differentialgleichung 2. Ordnung! Lösungsansatz ist uns bestens vertraut:

F (x) = Cx sin(kxx) +Dx cos(kxx) ⇒
dF

dx
= kxCx cos(kxx)− kxDx sin(kxx)

⇒
d2F

d2x
= −k2xCx sin(kxx)− k2xDx cos(kxx) = −k2xψx(x)

Ansatz erfüllt offensichtlich die Differentialgleichung!

Zusätzlich gelten Randbedingungen: F (x) und dF
dx müssen bei x = 0 und x = Lx stetig sein. Da

F (x) für x /∈ [0;Lx] verschwindet, folgt:

F (0) = Cx sin(kx · 0) +Dx cos(kx · 0) = Dx
!
= 0 ⇒ Dx = 0

F (Lx) = Cx sin(kxLx)
!
= 0 ⇒ kxLx = nxπ mit nx ∈ N

Zusammen folgt:

F (x) = Cx sin(kxx) mit kx =
nxπ

Lx
und nx ∈ N (9)

Die Normierungskonstante Cx ist bis dato nicht näher bestimmt. Die Normierung erfolgt im
nächsten Abschnitt. Für die zugehörige Energie ergibt sich nun aber bereits:

Ex =
~
2k2x
2m

=
~
2
(
nxπ
Lx

)2

2m
=

~
2n2xπ

2

2mL2
x

(10)
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Zweidimensionale zeitunabhängige Wellenfunktion ψ(x, y): Analoge Lösungen in der anderen Raum-
richtung y. Zusammen ergibt sich:

ψnx,ny
(x, y) = F (x) ·G(y)· = Cx sin(kxx) · Cy sin(kyy)

mit kx =
nxπ

Lx
ky =

nyπ

Ly
mit nx, ny ∈ N

Die beiden Normierungskonstanten lassen sich zu einer einzigen zusammennehmen (C = CxCy):

ψnx,ny
(x, y) = C sin(kxx) sin(kyy)

In der Fläche befindet sich genau ein Teilchen ⇒ Normierung von ψnx,ny
(x, y):

∫

R2

|ψnx,ny
(x, y)|2 dA =

∫ Lx

0

∫ Ly

0

|C|2 sin2(kxx) sin
2(kyy) dy dx

= |C|2 ·

∫ Lx

0

sin2(kxx) dx ·

∫ Ly

0

sin2(kyy) dy

= |C|2 ·
Lx
2

·
Ly
2

= |C|2 ·
A

4

!
= 1 ⇒ C =

√
4

A
(reell)

Alles zusammen: Gesamte örtliche Wellenfunktion:

ψnx,ny
(x, y) =

√
4

A
sin(kxx) sin(kyy) (11)

Resp. vollständige, separierbare, normierte Lösung der Schrödinger-Gleichung:

Ψnx,ny
(x, y, t) = ψnx,ny

(x, y) · e−iEnx,ny t/~

=

√
4

A
sin(kxx) sin(kyy) · e

−iEnx,ny t/~

Dabei gilt für die zugehörige Gesamtenergie gemäß (10):

Enx,ny
= Ex + Ey =

~
2n2xπ

2

2mL2
x

+
~
2n2yπ

2

2mL2
y

=
~
2π2

2m

(
n2x
L2
x

+
n2y
L2
y

)
(12)

4 Repetition: Stationäre Zustände

Lösungen Ψnx,ny
(x, y, t) stehen für stationäre Zustände – mit all ihren wichtigen Eigenschaften:

Konstante Erwartungswerte: Befindet sich ein Teilchen im Zustand Ψnx,ny
(x, y, t), so sind die Erwar-

tungswerte 〈Q〉 sämtlicher physikalischen Größen Q zeitlich konstant:

〈Q〉 =

∫

R2

Ψ
∗

nx,ny
Q̂Ψnx,ny

dA =

∫

R2

ψ∗

nx,ny
Q̂ψnx,ny

dA = konst. (13)

Scharfer Energiewert: Zum ZustandΨnx,ny
(x, y, t) gehört eine ganz bestimmte, scharfe Energie Enx,ny

.
Eine Messung der Gesamtenergie eines Teilchens in diesem Zustand ergibt genau diesen Wert (keine
Unbestimmtheit mehr).
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Vollständigkeit: Die allgemeine Lösung der Schrödinger-Gleichung (1) ist eine Linearkombination der
separierbaren Lösungen mit Koeffizienten cnx,ny

:

Ψ(x, y, t) =
∑

nx,ny

cnx,ny
Ψnx,ny

(x, y, t) =
∑

nx,ny

cnx,ny
ψnx,ny

(x, y) · e−iEnx,ny t/~

mit
∑

nx,ny

|cnx,ny
|2 = 1

Orthonormalität: Für je zwei örtliche Anteile ψnx,1,ny,1
(x, y) und ψnx,2,ny,2

(x, y) von separierbaren
Lösungen der zeitunabhängigen Schrödinger-Gleichung gilt:

∫

R2

ψ∗

nx,1,ny,1
ψnx,2,ny,2

dA = δnx,1nx,2
δny,1ny,2

=

{
1 für nx,1 = nx,2 und ny,1 = ny,2
0 sonst

5 Das Energiespektrum des Topfpotentials

Welche Energiewerte kann nun ein Teilchen im unendlich tiefen zweidimenmsionalen Potentialtopf auf-
weisen?

Zur Veranschaulichung dieser Frage betrachten wir einen Topf, bei dem die Abmessungen Lx und Ly
fast, aber nicht ganz genau gleich groß sind. Diese Längen seien gerade so gewählt, dass die niedrigsten
Energien in den zwei Raumrichtungen Ex,1 = ~

2π2

2mL2
x

= 1eV und Ey,1 = ~
2π2

2mL2
y

= 1.2 eV betragen. Der

rechteckige Topf ist also in x-Richtung etwas länger als in y-Richtung, denn E ∼ 1
L2 .

Nun kann das Zahlenpaar (nx, ny) jede Kombination in N
2 annehmen. Die zugehörige Gesamtenergie

ist gemäß (12) jeweils gegeben durch:

E = n2x ·Ex,1 + n2y ·Ey,1 =
(
1.0n2x + 1.2n2y

)
eV (14)

Dies spannt das Energiespektrum des Teilchens im unendlich tiefen Potentialtopf auf, wie die Grafik
auf der nächsten Seite illustriert. Zu jedem Paar (nx, ny) gehört ein ganz bestimmtes Energieniveau.

Da die Energien Ex,1 = 1eV und Ey,1 = 1.2 eV nahe beieinander liegen, überrascht es nicht, dass wir
in diesem Energiespektrum anfänglich ein Paar von nahe beieinander liegenden Energieniveaus finden,
z.B. für (nx, ny) = (2, 1) und (1, 2). Beim (3, 1) und (1, 3) sind die Abstände schon größer, weil der
Unterschied zwischen 12 und 32 deutlich größer ist als derjenige zwischen 12 und 22.

Außerdem wird mit zunehmender Energie diese Paarstruktur immer weniger sichtbar. Dies ist so, weil
die Dichte der Kombinationen und somit der Energiewerte zu, sodass sich Paare zu überlappen beginnen
und die Unterscheidung schwer fällt.
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