Zweidimensionale QM — das Teilchen im Topf

1 Wellenfunktion, Potential und Schrédinger-Gleichung im R?

Ort * — (x,y): Punkt P im zweidimensionalen Raum R? = Koordinatentripel (z,y) gibt an, wie
weit vom Ursprung aus in z- und in y-Richtung, um zu P zu gelangen.

Potential V(z) — V (x,y): Zu jedem Ort (z,y) gehort eine potentielle Energie V (x,y, z).

Wellenfunktion ¥ (x,t) — ¥(x,y,t): Auch Wellenfunktion ¥ ist zweidimensional, hangt nun also
von drei Variablen z, y und t ab. |¥(z,y,t)|? beschreibt zu jedem Zeitpunkt ¢ die Wahrscheinlich-
keitsdichte resp. Aufenthaltswahrscheinlichkeit des Teilchens am Ort (z,y). Genauer:

Wahrsch. das TI. zur Zeit ¢ innerhalb der Flache A zu finden = / | (x,y,t)]* dA

Y2
/ / U (z,y,t)* de dy
Y1

Schrédinger-Gleichung fiir ¥ (x,y,t): Gleichung muss auf zwei Dimensionen erweitert werden. Nicht
weiter schwierig! Sieht wie folgt aus:

ov n? 0*v ov h?
" Yy n "
ot 2m 0z? v - ot 2m <

Es kommt lediglich die partielle zweite Ableitung nach y hinzu!

02w 9w

o +62>+VW

Unter Verwendung des Laplace-Operators A := 88—;2 + 59—;2 schreiben wir kiirzer:

v 2
Zweidimensionale Schrédinger-Gleichung: ih 68—75 = —h— AV +VY (1)

2 Variablenseparation wie gehabt!

Stationdres Potential: Das Potential sei zeitunabhdngig, also V = V (z,y).
Separationsansatz: Wir gehen zunichst von separierbaren Losungen aus:

Wellenfunktion ¥(z,y,t) ist Produkt aus nur vom Ort (z,y) abhdngigen Anteil ¢)(z,y) und nur
von der Zeit ¢ abhdngigen Anteil (¢).

Einsetzen in die Schrédinger-Gleichung: Bearbeite Schrdodinger-Gleichung mittels Separationsansatz:

ov h? de h?
ih—=——AV v ihy — pA
ih—, T +V = i T’Z)dt o v+ Vo
Division durch ¥ = @1 ergibt:
1 dep n? 1
——=—-—-A E
ih T om0 w—i-V

Da die linke Seite 1h¢ =2 nur von t und die rechte Seite ——2 = A’l/) + V nur von (z,y) abhingig
ist, miissen beide Selten konstant sein, sonst kdnnen sie unmogllch fiir beliebige Werte von t resp.
von (z,y) stets iibereinstimmen! = zwei Gleichungen zur Separationskonstante E:

1 de R? 1
- _p d - A E
o dt un om p STV =



L6sung der Zeitgleichung: Differentialgleichung fiir zeitabhangigen Anteil () ist rasch gelost:

1d d iE ;
_SD = F = _SD — _1_ © = (p(t) —A. e*lEt/h

L1
BT dt h

Praktisch: |¢!| = 1 = setze A = 1 und iiberlasse damit die Normierung der Wellenfunktion
¥ (x,y,t) dem ortsabhangigen Anteil ¢ (z,y).

Zeitkomponente der Wellenfunktion zu E:  (t) = ¢ 'E4/" (3)
Zeitunabhiangige Schrodinger-Gleichung: Multipliziere zeitunabhingige Gleichung mit ¢:

2
3D zeitunabhdngige Schrddinger-Gleichung: — 2h—m A+ Vi = Ey (4)

Notation mit Hamilton-Operator: Im zweidimensionalen ist der Hamilton-Operator H (= Operator
zur Gesamtenergie F des Teilchens) gegeben durch:

~ h? R (0% O
H: ——A = - _ —_
2m v 2m <8x2 * 8y2> v

Damit Iasst sich die zeitunabhangige Schrodinger-Gleichung verkiirzt schreiben:
Kurzform zeitunabhdngige Schrodinger-Gleichung: Hiy = Ev (5)

= Separationskonstante E weist die Dimension einer Energie auf!

3 Das zweidimensionale Kastenpotential

“Im Topf eingesperrt”: Betrachte ein Teilchen in einer rechteckigen Flache mit Lange L, und Breite
L,. Die Wande seien “hart”, wahrend sich das Teilchen im Innenraum frei bewegen kann. Das
bedeutet, fiir das nicht von der Zeit ¢t abhangige Potential V soll gelten:

Viz.y) 0 fir 0<x<L, und 0<y<L,
x, =
Y +00 sonst

Zweite Variablenseparation: In obigen zwei Bedingungen fiir V(x,y) = 0 steckt die “Symmetrie” des
Potentials. Die zwei Ortskoordinaten x und y sind bei der Uberpriifung dieser Bedingungen separat
zu betrachten. Sie sind in gewisser Weise voneinander unabhangig.

Dies legt folgende neuerliche Variablenseparation der 6rtlichen Wellenfunktion v (z,y) nahe:
Zweite Variablenseparation: Y(z,y) = F(z) - G(y) (6)

Wir gehen also davon aus, dass sich ¢(z, y) als Produkt zweier voneinander unabhingiger Funktion
F(z) und G(y) schreiben lasst, die je nur von einer einzigen Ortskoordinate abhangen.

Anwendung: Wir setzen diesen zweiten Separationsansatz (6) in die zeitunabhingige Schrédinger-
Gleichung (4) ein (V =0 im Innern des Topfs):

h? h? d’F d2G\
——A =——(G=%+F—-— ) =E-FG=F
2m VY 2m (G az " dy2> ¢ v

Division durch ¢ = FG ergibt:
R 1 d*F B 1 d°G



Neue Energie-Separationskonstanten: Jedes der zwei Glieder auf der linken Gleichungsseite hangt
nur von einer der beiden Ortskoordinaten x und y ab. Diese sind aber unabhingig voneinander
variabel. Trotzdem muss sich auf der rechten Seite ein konstanter Wert E ergeben. Das kann nur
bedeuten, dass jedes Glied auf der linken Gleichungsseite fiir sich alleine konstant ist. Es ergeben
sich somit zwei neue Energie-Separationskonstanten £, und E,:

r? 1 d*F 1 d’G
-———=—=E; und - = =L,

2m F da? 2m G dy?
Nun ist die Gesamtenergie E des Zustandes die Summe aus zwei Teilenergien, die je zu einer
Raumrichtung gehoren:

E,+E,=E (7)
Interpretation: Da es im Innern des Topfs keine potentielle Energie gibt (V' = 0), setzt sich

die Gesamtenergie E aus den zwei kinetischen Energien in den verschiedenen Raumrichtungen
zusammen.

Neue Gleichungen: Aus der zeitunabhingigen, zweidimensionalen Schrodinger-Gleichung erhalten wir
also zwei Differentialgleichungen, eine fiir jede der beiden Raumrichtungen:

n d*F

2 2

-———=FKG 8

™m dy2 Yy ( )
Die Strukturen sind identisch! = Wir brauchen nur eine Gleichung zu 16sen. Die Lésung der anderen
Gleichung sieht gleich aus.

L6ésung in einer Raumdimension: Betrachte z-Gleichung:

2 d2F d2F
— = =

2mE,
Com da? EzF dz?

h2

= —k:F mit k2=

Lineare, homogene Differentialgleichung 2. Ordnung! Lésungsansatz ist uns bestens vertraut:

F
F(z) = Cysin(kyx) + Dy cos(kyz) = (31— = kyCy cos(kyx) — ky Dy sin(ky,x)
x
d*F 207 2 2
= = —k:Cy sin(kyx) — ki Dy cos(kyx) = —kipy(x)

Ansatz erfiillt offensichtlich die Differentialgleichung!

Zusitzlich gelten Randbedingungen: F'(x) und % miissen bei x = 0 und x = L, stetig sein. Da
F(z) fur z ¢ [0; L,] verschwindet, folgt:

F(0) = Cysin(ky - 0) + Dycos(ky - 0) =Dy, =0 = Dy =0

F(L,) =Cysin(kyLy) = 0 = kpyL, =n,m mit n; €N

Zusammen folgt:

F(z) = Cysin(kyx) mit k, = rgw und n, eN (9)

T

Die Normierungskonstante C, ist bis dato nicht ndher bestimmt. Die Normierung erfolgt im
nachsten Abschnitt. Fiir die zugehorige Energie ergibt sich nun aber bereits:

LR K%Y p2pln?

E =
“ 2m 2m 2mL2

(10)



Zweidimensionale zeitunabhingige Wellenfunktion v(x,y): Analoge Lésungen in der anderen Raum-
richtung y. Zusammen ergibt sich:

¢nz,ny (:C, y) = F(x) : G(y) =C; Sin(k:vx) ’ Cy Sin(kyy)

. NgT Ty T .
mit ky = — ky = LL mit  ng,ny € N
Yy

Die beiden Normierungskonstanten lassen sich zu einer einzigen zusammennehmen (C' = C,C,):
Vg, (2,y) = C sin(kyx) sin(ky,y)

In der Flache befindet sich genau ein Teilchen = Normierung von v, n, (z,¥):
Lo Ly
[ W epPaa= [ [7ICP sin?(hya) siv® (k) dy da
R2 ' 0 0

Lq L
=|CP?. / sin?(kpx) dx - / ’ sin? (kyy) dy
0 0

L, L A 4
:10\2-796-7?/:\012;;1 = C=y/5 (reel)

Alles zusammen: Gesamte drtliche Wellenfunktion:

4 .
Una, (€,y) = ([ 7 sin(kow) sin(kyy) (11)
Resp. vollstindige, separierbare, normierte Lésung der Schrédinger-Gleichung:

U ny (T,9,1) = Yy n, (2,y) - € Eremyt/h

4 .
=4/ 1 sin(kyz) sin(kyy) - e Erenyt/h

Dabei gilt fiir die zugehdrige Gesamtenergie gemaB (10):

Enw,ny =FE;,+FE, =

L2 L2

2,22 2
R2nin?  hengm® pPr? <n2 n >
T Y

x )
2mL2 2mL2  2m

(12)

4 Repetition: Stationdre Zustdnde

Losungen ¥, ., (x,y,t) stehen fiir stationdre Zustande — mit all ihren wichtigen Eigenschaften:
Konstante Erwartungswerte: Befindet sich ein Teilchen im Zustand ¥, ,, (2,y,t), so sind die Erwar-
tungswerte (@) samtlicher physikalischen GréBen @) zeitlich konstant:

Q) = /R U, Q Ve, dA = /R i, @Un,n, dA = onst. (13)

Scharfer Energiewert: Zum Zustand ¥,,, ,, (7, y,t) gehdrt eine ganz bestimmte, scharfe Energie E,, .

Eine Messung der Gesamtenergie eines Teilchens in diesem Zustand ergibt genau diesen Wert (keine
Unbestimmtheit mehr).



Vollstandigkeit: Die allgemeine Losung der Schrédinger-Gleichung (1) ist eine Linearkombination der
separierbaren Losungen mit Koeffizienten ¢, 5,

g —iE t/h
.%' y7 Z Cng,ny nxany(x y7 Cnx7nywnw,ny(x7y) .e na,myt/

Na,Ny Nz ,Ny

mit > |engn,|’ =

Nz, My

Orthonormalitét: Fiir je zwei ortliche Anteile ¥y, |, (%,y) und ¥n, ,n,,(T,y) von separierbaren
Losungen der zeitunabhingigen Schrédinger-Gleichung gilt:

1 fiir ng1 =ng2und ny1 =nyo

* — p—
/R2 wnz,l,ny,lw”manw dA = 5%,1”1,25%,1”@;,2 - { 0 sonst

5 Das Energiespektrum des Topfpotentials

Welche Energiewerte kann nun ein Teilchen im unendlich tiefen zweidimenmsionalen Potentialtopf auf-
weisen?

Zur Veranschaulichung dieser Frage betrachten wir einen Topf, bei dem die Abmessungen L, und L,
fast, aber nicht ganz genau gleich groB sind. Diese Langen seien gerade so gewahlt dass die niedrigsten

Energien in den zwei Raumrichtungen E, 1 = QH 722 =1leVund £y, = Qh 722 = 1.2eV betragen. Der

rechteckige Topf ist also in z-Richtung etwas langer als in y-Richtung, denn E ~ —.
Nun kann das Zahlenpaar (n,,n,) jede Kombination in N? annehmen. Die zugehérige Gesamtenergie
ist gemaB (12) jeweils gegeben durch:

FE = ni - By + n?/ By = (1.0ni +1.2 nz) eV (14)

Dies spannt das Energiespektrum des Teilchens im unendlich tiefen Potentialtopf auf, wie die Grafik
auf der nichsten Seite illustriert. Zu jedem Paar (n,,n,) gehort ein ganz bestimmtes Energieniveau.

Da die Energien E, 1 = 1eV und E, ; = 1.2¢eV nahe beieinander liegen, iiberrascht es nicht, dass wir
in diesem Energiespektrum anfinglich ein Paar von nahe beieinander liegenden Energieniveaus finden,
z.B. fiir (ng,ny) = (2,1) und (1,2). Beim (3,1) und (1,3) sind die Abstinde schon groBer, weil der
Unterschied zwischen 12 und 32 deutlich gréBer ist als derjenige zwischen 12 und 22.

AuBerdem wird mit zunehmender Energie diese Paarstruktur immer weniger sichtbar. Dies ist so, weil
die Dichte der Kombinationen und somit der Energiewerte zu, sodass sich Paare zu {iberlappen beginnen
und die Unterscheidung schwer fllt.
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