
Ergänzungen zur Quantenphysik

Der fallende Stein nach Griffiths

Auf diesen Seiten soll anhand des Beispiels 1.1 aus dem Buch Quantenmechanik von David J. Griffiths
veranschaulicht werden, wie ungeheuer praktisch der Umgang mit infinitesimalen Schritten ist. Hier
zunächst die Aufgabenstellung aus dem Buch:

Beispiel 1.1: Wahrscheinlichkeit und Wahrscheinlichkeitsdichte

Wir nehmen an, ich lasse einen Stein von einer Klippe der Höhe h herabfallen.
Während der Stein fällt, mache ich in zufälligen Abständen eine Million Fotos.
Auf jedem der Bilder messe ich die Strecke, die der Stein gefallen ist.

Frage: Was ist der Mittelwert aller dieser Strecken? Oder mit anderen Worten:
Was ist das zeitliche Mittel der zurückgelegten Strecken?

In seiner Lösung macht uns Griffiths zuerst darauf aufmerksam, dass wir bereits eine gewisse Vorstellung
haben, wo der gesuchte Mittelwert liegen muss:

Lösung: Der Stein ist anfangs in Ruhe und wird beim Fallen immer schneller;
während eines größeren Teils der Fallzeit ist er also am oberen Rand der Klippe,
die mittlere Entfernung muss also geringer als h/2 sein.

Nun zitiert Griffiths das Fallgesetz der Newton’schen Mechanik:

Wenn wir den Luftwiderstand vernachlässigen, hat der Stein zum Zeitpunkt t die
Strecke x zurückgelegt:

x(t) =
1

2
gt2

Wir kennen also die Ortsfunktion x(t) zu diesem Vorgang. Der Stein wird zum Zeitpunkt t = 0 am Ort
x = 0 losgelassen.

Griffiths verweist im Folgenden darauf, dass die Geschwindigkeit v des Steins zum Zeitpunkt t und
die gesamte Fallzeit T ebenso bekannt sind:

Die Geschwindigkeit ist dx/dt = gt, und die gesamte Fallzeit ist T =
√

2h/g.

Den Ausdruck für die gesamte Fallzeit T (für die Höhe h) verstehen wir sofort:

x(T ) =
1

2
gT 2 !

= h ⇒ T =

√

2h

g

Aber wozu erwähnt Griffiths die Geschwindigkeit? Worauf will er uns hinweisen?
Zunächst ist klar, dass sich die Geschwindigkeitsfunktion v(t) tatsächlich so ergibt, wie Griffiths sagt:

v(t) =
dx

dt
=

[

1

2
gt2

]′

=
1

2
g · 2t = gt

Das muss ja so sein, denn der Stein beschleunigt beim Fallen gleichmäßig mit der Fallbeschleunigung g.
Mit der Leibniznotation dx

dt
für die Ableitung können wir diese Gleichung umstellen:

dx

dt
= gt ⇒ dx = gt · dt

Wie ist diese neue Gleichung für die infinitesimalen Schritten dx und dt zu interpretieren?
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Betrachten wir den Stein zu irgendeinem Zeitpunkt t während des Fallens. In diesem Moment befin-
det er sich am Ort x = 1

2
gt2 und hat die Geschwindigkeit v(t) = gt. Was passiert im nächstfolgenden

infinitesimalen Zeitabschnitt dt? Klar: der Stein wird sich um eine infinitesimale Strecke dx weiterbewe-
gen. Und das ist nun genau die Aussage der Gleichung dx = gt · dt: Die während dem Zeitschritt dt

zurückgelegte Strecke dx ist proportional zu dt und der Proportionalitätsfaktor ist die aktuelle

Geschwindigkeit gt.

Nebenbei: Im Prinzip sollte man vollständiger aufschreiben:

dx(t) = gt · dt

Der infinitesimale Ortsschritt dx zum Zeitpunkt t beträgt gt · dt. Die Klammer (t), die explizit zum
Ausdruck bringt, dass es sich um den infinitesimalen Ortsschritt dx zum Zeitpunkt t handelt, lässt man
aber in aller Regel weg.

Natürlich ist umgekehrt auch dt proportional zu dx:

dx = gt · dt ⇔ dt =
dx

gt

Jetzt lautet der Proportionalitätsfaktor 1

gt
. Auch dies lässt sich gut verstehen: Je weiter unten der infini-

tesimale Streckenabschnitt dx liegt, desto mehr Zeit t ist vergangen, desto größer ist die Geschwindigkeit
v = gt und desto geringer ist die infinitesimale Zeitspanne dt, die zur Durchquerung von dx notwendig
ist.

Als nächstes geht Griffiths auf die zeitliche Verteilung der Fotos ein:

Die Wahrscheinlichkeit, dass die Kamera im Intervall dt auslöst, beträgt dt/T , . . .

Achtung! Hier meint Griffiths die Wahrscheinlichkeit dafür, dass ein einzelnes Bild im Zeitabschnitt dt
gemacht wird. Es geht in diesem Moment also nicht um die Gesamtheit der ganzen Million Fotos, denn
sonst wäre die Wahrscheinlichkeit für ein Foto während dt eine Million mal so groß.

Überlegen wir: Wenn ich ein endliches Zeitintervall ∆t innerhalb der Fallzeit von T betrachte, so besteht
für jedes einzelne Foto die Wahrscheinlichkeit ∆t

T
, dass es im Abschnitt ∆t aufgenommen wird, denn

∆t
T

steht genau für den Anteil, den ∆t in T ausmacht. Dieselbe Überlegung gilt immer noch, wenn ich

∆t infinitesimal werden lasse: ∆t → dt. Folglich ist dt
T

die (unendlich kleine, aber von 0 verschiedene)
Wahrscheinlichkeit, dass ein einzelnes Foto im infinitesimalen Zeitschritt dt aufgenommen wird.

Hier sollten wir noch etwas weiterdenken. Angenommen, wir betrachten den Zeitpunkt t, zu dem
sich der Stein am Ort x befindet, so können wir für die Wahrscheinlichkeit, dass ein einzelnes Foto in
dem an t anschließenden infinitesimalen Zeitschritt dt gemacht wird, schreiben:

̺(t) dt =
1

T
dt = Wahrscheinlichkeit, dass das Foto im Zeitintervall [t; t+ dt] aufgenommen wird

Dabei steht ̺(t) für die zeitliche Wahrscheinlichkeitsdichte für ein einzelnes Foto. Offensichtlich ist
sie für alle Zeitpunkte gleich. Die Gesamtwahrscheinlichkeit eines Fotos (= 1 = 100%) wird gleichmäßig
über die gesamte Fallzeit T verteilt, also eben ̺(t) = 1

T
= 100%

T
.

Nun gehört aber, wie weiter oben beschrieben, zum Zeitschritt dt auch ein Ortsschritt dx = gt · dt
und es sollte sich genauso gut beantworten lassen, wie wahrscheinlich es ist, dass das einzelne Foto
in diesem Ortsschritt dx hinter dem aktuellen Ort x gemacht wird. Es muss also auch eine örtliche

Wahrscheinlichkeitsdichte ̺(x) geben mit:

̺(x) dx = Wahrscheinlichkeit, dass das Foto im Ortsintervall [x;x+ dx] aufgenommen wird

Da die infinitesimalen Schritte dt und dx zusammengehören, müssen die zugehörigen Wahrscheinlich-
keiten dieselben sein:

̺(t) dt = ̺(x) dx
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Genau diesen Zusammenhang nutzt Griffiths in der Folge aus, um die örtliche Wahrscheinlichkeitsdichte
̺(x) zu berechnen. Wir lesen weiter:

Die Wahrscheinlichkeit, dass die Kamera im Intervall dt auslöst, beträgt dt/T ,
also ist die Wahrscheinlichkeit, dass ein bestimmtes Foto eine Strecke in dem
entsprechenden Bereich dx zeigt,

dt

T
=

dx

gt

√

g

2h
=

1

2
√
hx

dx

Offenbar ist die Wahrscheinlichkeitsdichte

̺(x) =
1

2
√
hx

(0 ≤ x ≤ h)

(außerhalb dieses Bereichs ist die Wahrscheinlichkeitsdichte natürlich 0).

Zunächst benutzen wir einfach die vorher entdeckten Zusammenhänge dt = dx
gt

und T =
√

2h
g
:

̺(t) dt =
dt

T
=

dx
gt

√

2h
g

=
dx

gt

√

g

2h

Weiter drücken wir den Zeitpunkt t durch den Ort x aus, x = 1

2
gt2 resp. t =

√

2x
g
, und setzen ein:

̺(t) dt =
dx

gt

√

g

2h
=

dx

g
√

2x
g

·
√

g

2h
=

dx

g
·
√

g

2x
·
√

g

2h
=

dx√
4xh

=
1

2
√
hx

dx
!
= ̺(x) dx

Und nun kommt die oben erläuterte Identifikation: Die Wahrscheinlichkeit ̺(t) dt, den Stein im infinite-
simalen Zeitabschnitt dt zu fotografieren, muss gleich der Wahrscheinlichkeit ̺(x) dx sein, den Stein im
zugehörigen infinitesimalen Streckenabschnitt dx aufzunehmen. Folglich muss der Ausdruck 1

2
√
hx

der

örtlichen Wahrscheinlichkeitsdichte ̺(x) entsprechen:

1

2
√
hx

dx
!
= ̺(x) dx ⇒ ̺(x) =

1

2
√
hx

Da der Stein während der betrachteten Zeitspanne niemals außerhalb des Intervalls [0;h] anzutreffen ist,
muss dort die Wahrscheinlichkeitsdichte verschwinden: ̺(x) = 0 für x /∈ [0;h].

Griffiths kontrolliert nun zuerst, ob die Wahrscheinlichkeitsdichte so stimmen kann. Da ̺(x) dx für
die Wahrscheinlichkeit steht, dass der Stein auf dem infinitesimalen Abschnitt [x;x + dx] fotografiert
wird, muss die Summe über alle diese Wahrscheinlichkeiten gleich 1 sein, denn irgendwo muss der Stein
auf einem Foto schließlich sein. Eine Summe über infinitesimal große Beiträge entspricht einem Integral:

Wir können dieses Ergebnis mit Gleichung 1.16 überprüfen:

∫ h

0

1

2
√
hx

dx =
1

2
√
h

(

2x
1

2

)

∣

∣

∣

∣

h

0

= 1

Natürlich sind wir uns aus der Gymi-Mathe gewohnt, dass solche Rechnungen ein paar Zwischenschritte
mehr aufweisen. Hier die ausführlicher gezeigte Rechnung:

∫ h

0

̺(x) dx =

∫ h

0

1

2
√
hx

dx =
1

2
√
h

∫ h

0

1√
x
dx =

1

2
√
h

∫ h

0

x−
1

2 dx

=
1

2
√
h
· 1
1

2

·
(

x
1

2

)

∣

∣

∣

∣

h

0

=
1√
h
·
(√

x
)

∣

∣

∣

h

0
=

1√
h
·
(
√
h− 0

)

= 1
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Die Gesamtwahrscheinlichkeit beträgt also 1. Das durften wir von einer vernünftigen Wahrscheinlich-
keitsdichte ̺(x) so erwarten.

Zum Ende berechnet Griffiths den Erwartungswert für den Ort:

Die mittlere Strecke (Gleichung 1.17) ist

〈x〉 =
∫ h

0

x
1

2
√
hx

dx =
1

2
√
h

(

2

3
x

3

2

)
∣

∣

∣

∣

h

0

=
h

3

und das ist wie erwartet weniger als h/2.

Auch hier noch eine ausführlichere Version der Rechnung:

〈x〉 =
∫ h

0

x ̺(x) dx =

∫ h

0

x
1

2
√
hx

dx =
1

2
√
h

∫ h

0

√
xdx =

1

2
√
h

∫ h

0

x
1

2 dx

=
1

2
√
h
· 2
3
·
(

x
3

2

)

∣

∣

∣

∣

h

0

=
1

3
√
h
·
(

x
√
x
)

∣

∣

∣

∣

h

0

=
1

3
√
h
·
(

h
√
h− 0

)

=
h

3

Der Mittelwert der Orte auf allen Bildern liegt etwa bei einem Drittel der Fallstrecke (von oben her
gemessen). Machen wir N = 1 Million Aufnahmen, so dürfte der Mittelwert 〈x〉 relativ gut realisiert
werden. Werden hingegen nur wenige Fotos geschossen, so gibt es eher Abweichungen davon. Der Mittel-
oder Erwartungswert ist statistisch als exakter Grenzwert für N → ∞ zu verstehen!

Abbildung 1.6 zeigt den Graphen von ̺(x). Beachten Sie, dass die Wahrschein-
lichkeitsdichte unendlich groß sein kann, obwohl die Wahrscheinlichkeit selbst (das
Integral über ̺) natürlich endlich ist (d.h. kleiner oder gleich 1).

Tatsächlich steigt ̺(x) für x → 0 ins Unendliche an. Die Fläche unter dem Graphen über dem Intervall
[0;h] ist aber trotzdem endlich, nämlich gleich 1, wie wir oben berechnet haben. Unendlich große Wahr-
scheinlichkeitsdichten sind also kein Problem, weil sie unter dem Integral mit unendlich kleinen, eben
infinitesimalen Strecken dx multipliziert werden.
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