
Übungen zum physikalischen Ergänzungsfach

Serie 11: Operatoren, Unschärferelation und Variablenseparation –

LÖSUNGEN

1. •• Rund um Operatoren

(a) Für den Operator der quadratischen kinetischen Energie erhalten wir:

T̂ 2 =

(
p̂ 2

2m

)2

=
1

4m2
·
(
~

i

∂

∂x

)4

=
~
4

4m2
· ∂

4

∂x4

Dabei haben wir verwendet, dass i4 = 1 ist.

(b) Wir benutzen irgendeine Testfunktion f(x, t) um darauf den Kommutator von Orts- und Impulsope-
rator anzuwenden:

[ x̂, p̂ ] f(x, t) = (x̂ p̂− p̂ x̂) f(x, t) = x̂ p̂ f(x, t)− p̂ x̂ f(x, t)

= x · ~
i

∂

∂x
f(x, t)− ~

i

∂

∂x

(
x · f(x, t)

)

Wir sehen, wie im ersten Glied die Ableitung des Impulsoperators nur auf die Funktion f angewendet
wird, während beim zweiten Operator das Produkt aus x und der Funktion f abgeleitet wird, wobei
die Produktregel zur Anwendung kommt:

[ x̂, p̂ ] f(x, t) = x · ~
i

∂

∂x
f(x, t)− ~

i

∂

∂x

(
x · f(x, t)

)

=
~x

i

∂f

∂x
− ~

i
f(x, t)− ~x

i

∂f

∂x
= −~

i
f(x, t) = i~ f(x, t)

Damit haben wir nun gesehen, dass der Kommutator des Ortsoperators selber ein Operator ist, der eine
beliebige Funktion einfach mit i~ multipliziert, wenn er darauf angewendet wird. In Kurzformschreiben
wir:

[ x̂, p̂ ] = i~

Entscheidend ist, dass dies von 0 verschieden ist. Wir sagen: “Der Orts- und der Impulsoperator
vertauschen nicht miteinander.”

2. •• Der Grundzustand des quantenmechanischen harmonischen Oszillators

(a) Für die Normierung benötigen wir das Betragsquadrat der Wellenfunktion:

|Ψ(x, t)|2 = Ψ
∗
Ψ = Ae−a[(mx2/~)−it ] ·Ae−a[(mx2/~)+it ] = A2 e−2amx2/~

Setzen wir λ = 2am
~

, so ergibt sich mit dem in der Aufgabenstellung angegebenen Integralwert:

∫ +∞

−∞

Ψ
∗
Ψ dx = A2 ·

∫ +∞

−∞

e−2amx2/~ dx = A2 ·
∫ +∞

−∞

e−λx2

dx = A2 ·
√
π

λ

= A2 ·
√

π
2am
~

= A2 ·
√

π~

2am

!
= 1 ⇒ A2 =

√
2am

π~
⇔ A =

4

√
2am

π~

Die Wellenfunktion Ψ(x, t) und ihr Betragsquadrat |Ψ(x, t)|2 lauten somit:

Ψ(x, t) =
4

√
2am

π~
· e−a[(mx2/~)+it] und |Ψ(x, t)|2 =

√
2am

π~
· e−2amx2/~

Beim Graphen von |Ψ |2 handelt es sich um eine Gauss’sche Glockenkurve.

1



(b) Für das Einsetzen von Ψ(x, t) in die Schrödinger-Gleichung dient es der Übersichtlichkeit, die partiellen
Ableitung bereits vorher zu erledigen. Da sich die unter (a) ermittelte Normierungskonstante A beim
späteren Einsetzen in die Schrödinger-Gleichung ohnehin wegkürzen muss, brauchen wir sie nicht
auszuschreiben:

∂Ψ

∂t
=

∂

∂t

(
Ae−a[(mx2/~)+it ]

)
= −ia ·Ae−a[(mx2/~)+it ] = −iaΨ

∂Ψ

∂x
=

∂

∂x

(
Ae−a[(mx2/~)+it ]

)
= −2amx

~
·Ae−a[(mx2/~)+it ] = −2am

~
xΨ

∂2Ψ

∂x2
=

∂

∂x

(
∂Ψ

∂x

)
=

∂

∂x

(
−2am

~
xΨ

)
= −2am

~

∂

∂x
(xΨ) = −2am

~

(
Ψ + x

∂Ψ

∂x

)

= −2am

~

(
Ψ + x

(
−2am

~
xΨ

))
= −2am

~

(
Ψ − 2am

~
x2 Ψ

)

= −2am

~

(
1− 2am

~
x2
)
Ψ =

(
−2am

~
+

4a2m2

~2
x2
)
Ψ

Mit diesen Ableitungen gehen wir in die Schrödinger-Gleichung:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ V Ψ |Ableitungen einsetzen

⇒ i~ · (−ia)Ψ = − ~
2

2m

(
−2am

~
+

4a2m2

~2
x2
)
Ψ + V Ψ | ausmultiplizieren und : Ψ

⇔ a~ = a~− 2a2mx2 + V | − a~+ 2a2mx2

⇔ 2a2mx2 = V

Damit haben wir ein quadratisch vom Ort x abhängiges Potenzial erhalten (keine Zeitabhängigkeit):

V (x) = 2ma2x2

Dies ist das Potenzial des harmonischen Oszillators, das in der klassischen Mechanik beispielsweise

einem Federpendel zugrunde liegt. Mit Ψ(x, t) = 4

√
2am
π~ · e−a[(mx2/~)+it] kennen wir nun bereits eine

Lösung der Schrödinger-Gleichung zu diesem Potenzial – es ist aber nicht die einzige.

(c) Es folgen vier Erwartungswertberechnungen. Dabei benutzen wir nach der Substitution λ = 2am
~

wiederum die in der Aufgabenstellung angegebenen Integralwerte (1) und (3), sowie beim Impuls die
unter (b) ermittelten Ableitungen:

〈x〉 =
∫ +∞

−∞

x |Ψ |2 dx = A2

∫ +∞

−∞

x

√
2am

π~
e−2amx2/~ dx =

√
2am

π~

∫ +∞

−∞

x e−λx2

dx = 0

〈x2〉 =
∫ +∞

−∞

x2 |Ψ |2 dx =

∫ +∞

−∞

x2
√

2am

π~
e−2amx2/~ dx =

√
2am

π~

∫ +∞

−∞

x2 e−λx2

dx

=

√
2am

π~
· 1

2λ

√
π

λ
=

√
2am

π~
· 1

2 · 2am
~

√
π

2am
~

=

√
2am

π~
· ~

4am

√
π~

2am
=

~

4am

〈p〉 =
∫ +∞

−∞

Ψ
∗ p̂Ψ dx =

∫ +∞

−∞

Ψ
∗
~

i

∂Ψ

∂x
dx =

∫ +∞

−∞

Ψ
∗
~

i

(
−2am

~
xΨ

)
dx

=
2am

i

∫ +∞

−∞

x |Ψ |2 dx =
2am

i

∫ +∞

−∞

x

√
2am

π~
e−2amx2/~ dx

=
2am

i

√
2am

π~

∫ +∞

−∞

x e−λx2

dx =
2am

i

√
2am

π~
· 0 = 0
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〈p2〉 =
∫ +∞

−∞

Ψ
∗

(
~

i

∂

∂x

)2

Ψ dx = −~
2

∫ +∞

−∞

Ψ
∗
∂2Ψ

∂x2
dx

= −~
2

∫ +∞

−∞

Ψ
∗

(
−2am

~
+

4a2m2

~2
x2
)
Ψ dx

= −~
2

∫ +∞

−∞

(
−2am

~
|Ψ |2 + 4a2m2

~2
x2 |Ψ |2

)
dx

= 2am~

∫ +∞

−∞

|Ψ |2 dx
︸ ︷︷ ︸

=1

− 4a2m2

∫ +∞

−∞

x2 |Ψ |2 dx

= 2am~− 4a2m2

∫ +∞

−∞

x2
√

2am

π~
· e−2amx2/~ dx

= 2am~− 4a2m2

√
2am

π~

∫ +∞

−∞

x2 e−λx2

dx = 2am~− 4a2m2

√
2am

π~

1

2λ

√
π

λ

= 2am~− 4a2m2

√
2am

π~

1

2 · 2am
~

√
π

2am
~

= 2am~− 4a2m2

√
2am

π~

~

4am

√
π~

2am

= 2am~− am~ = am~

(d) Mit den Resultaten aus (c) berechnen wir die Standardabweichungen von Ort und Impuls:

σx =
√

〈x2〉 − 〈x〉2 =
√

~

4am
− 0 =

√
~

4am

σp =
√

〈p2〉 − 〈p〉2 =
√
am~− 0 =

√
am~

Daraus ergibt sich für das Produkt der beiden Standardabweichungen:

σxσp =

√
~

4am
·
√
am~ =

√
~

4am
· am~ =

√
~2

4
=

~

2

Somit erfüllt die Wellenfunktion Ψ(x, t) = 4

√
2am
π~ e−a[(mx2/~)+it] die Heisenberg’sche Unschärfere-

lation σxσp ≥ ~

2 gerade noch.

(e) Wir nutzen aus, dass ĤΨ = − ~
2

2m
∂2

Ψ

∂x2 + V Ψ gerade der rechten Seite der Schrödinger-Gleichung
entspricht:

ĤΨ = − ~
2

2m

∂2Ψ

∂x2
+ VΨ

!
= i~

∂Ψ

∂t
= i~ · (−iaΨ) = a~Ψ

Damit folgt für den Erwartungswert der Gesamtenergie:

〈E〉 =
∫ +∞

−∞

Ψ
∗ĤΨ dx =

∫ +∞

−∞

Ψ
∗ a~Ψ dx = a~ ·

∫ +∞

−∞

Ψ
∗
Ψ dx = a~

Zu Beginn der Aufgabe wurde gesagt, dass Ψ(x, t) = 4

√
2am
π~ e−a[(mx2/~)+it] den Grundzustand des

quantenmechanischen harmonischen Oszillators beschreibt. Das bedeutet, es gibt offenbar auch ange-
regte Zustände eines solchen Oszillators. Der energetisch tiefste Zustand, also eben der Grundzustand,
hat aber offensichtlich nicht die Gesamtenergie 0. Auch wenn wir einen solchen Oszillator so weit wie
nur möglich abkühlen, enthält er Energie – er steht also quasi nie ganz still.
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Da Ĥ2 einfach für die doppelte Anwendung des Hamiltonoperators steht, finden wir sehr zügig:

Ĥ2 = Ĥ
(
ĤΨ

)
= Ĥ (a~Ψ) = a~ ĤΨ = a2~2Ψ

⇒ 〈E2〉 =
∫ +∞

−∞

Ψ
∗Ĥ2

Ψ dx =

∫ +∞

−∞

Ψ
∗ a2~2Ψ dx = a2~2 ·

∫ +∞

−∞

Ψ
∗
Ψ dx = a2~2

Somit folgt für die Standardabweichung der Energie:

σE =
√

〈E2〉 − 〈E〉2 =
√
a2~2 − (a~)2 = 0

Es gibt also keine Streuung der Energiewerte! Befindet sich der quantenmechanische Oszillator in
seinem Grundzustand, so wird eine Messung der Gesamtenergie stets exakt den Wert a~ liefern.

Es gibt also Zustände, die den Wert bestimmter Größen eindeutig festlegen! Das wollen wir hier
abschließend mitnehmen.

3. ◦◦ Freie Wahl des Nullniveaus: Klassische und Quantenmechanik im Vergleich

(a) Wir wollen Ψneu(x, t) = e−iV0t/~ ·Ψ(x, t) in die modifizierte Schrödinger-Gleichung

i~
∂Ψneu

∂t
= − ~

2

2m

∂2Ψneu

∂x2
+ (V + V0)Ψneu

einsetzen. Dabei sind in Ψneu beide Faktoren e−iV0t/~ und Ψ(x, t) von der Zeit t, aber nur Ψ(x, t)
vom Ort x abhängig. Daraus folgt für die partiellen Ableitungen in dieser modifizierten Schrödinger-
Gleichung:

∂Ψneu

∂t
=

∂

∂t

(
e−iV0t/~ ·Ψ

)
=

∂

∂t

(
e−iV0t/~

)
·Ψ + e−iV0t/~ · ∂Ψ

∂t

= − iV0
~
e−iV0t/~ ·Ψ + e−iV0t/~ · ∂Ψ

∂t
= e−iV0t/~

(
− iV0

~
Ψ +

∂Ψ

∂t

)

∂2Ψneu

∂x2
= e−iV0t/~ · ∂

2
Ψ

∂x2

Diese Ableitungen und Ψneu = e−iV0t/~ ·Ψ fügen wir in die modifizierte Schrödinger-Gleichung ein:

i~ · e−iV0t/~ ·
(
− iV0

~
Ψ +

∂Ψ

∂t

)
= − ~

2

2m
· e−iV0t/~ · ∂

2
Ψ

∂x2
+ (V + V0) · e−iV0t/~ ·Ψ

Zunächst teilen wir diese Gleichung durch den Phasenfaktor e−iV0t/~. Danach folgt weiter:

⇒ i~ ·
(
− iV0

~
Ψ +

∂Ψ

∂t

)
= − ~

2

2m

∂2Ψ

∂x2
+ (V + V0) ·Ψ | ausmultiplizieren

⇔ V0Ψ + i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ VΨ + V0Ψ | ursprüngliche S.-Gl.

⇒ V0Ψ = V0Ψ X

Dabei haben wir zuletzt verwendet, dass Ψ Lösung der ursprünglichen Schrödinger-Gleichung

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ VΨ

ist. Offensichtlich erfüllt Ψneu(x, t) die mit V0 modifizierte Schrödinger-Gleichung.
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(b) Der Wechsel des Nullniveaus der potentiellen Energie verändert also die Wellenfunktion, indem er ihr
den Phasenfaktor e−iV0t/~ hinzufügt. Welche Konsequenzen ergeben sich daraus für die Erwartungs-
werte, die nun mit Ψneu(x, t) anstelle von Ψ(x, t) berechnet werden müssen?

Wir untersuchen:

〈Q〉neu =

∫ +∞

−∞

Ψ
∗

neuQ̂Ψneu dx =

∫ +∞

−∞

(
e−iV0t/~ ·Ψ

)
∗

Q̂
(
e−iV0t/~ ·Ψ

)
dx

=

∫ +∞

−∞

eiV0t/~ ·Ψ∗ · e−iV0t/~ · Q̂Ψ dx =

∫ +∞

−∞

Ψ
∗Q̂Ψ dx = 〈Q〉bisher

Dabei haben wir verwendet, dass der Operator Q̂ keine Ableitung nach der Zeit t enthält und somit
der Phasenfaktor e−iV0t/~ als multiplikative Konstante vor den Operator genommen werden kann. Da
(e−iV0t/~)∗ = eiV0t/~, kürzt sich der Phasenfaktor aus der Rechnung raus.

Damit haben wir nun aber gezeigt, dass so ein Phasenfaktor für die Berechnung des Erwartungswertes
einer beliebigen Größe Q gar keine Rolle spielt.

Das bedeutet: Die Veränderung des Nullniveaus verändert in der Quantenmechanik zwar die Wellen-
funktion – Hinzufügen eines Phasenfaktors e−iV0t/~ – aber diese Modifizierung hat keinen Einfluss auf
die Erwartungswerte, die sich aus der Wellenfunktion ergeben. (Selbiges lässt sich übrigens auch für
die konkreten Messwerte zeigen, die man bei der Messung der Größe Q im Zustand Ψneu erhalten
könnte. Das erahnen wir an dieser Stelle, denn wenn der Mittelwert dieser Messwerte gleich bleibt,
dann dürfte das eben daraus folgen, dass auch die Einzelwerte nach wie vor dieselben sind.) Somit ist
auch in der Quantenmechanik eine freie Wahl des Nullniveaus der potentiellen Energie gewährleistet.

4. •• Zum mathematischen Verständnis separierbarer Lösungen

(a) Beim Lösen der Schrödinger-Gleichung (resp. ganz allgemein beim Lösen einer partiellen DGL) ist die
Variablenseparation

Ψ(x, t) = ψ(x) · ϕ(t)
ein sinnvoller Lösungsansatz. Die Idee ist, die von den beiden Variablen x und t abhängige Funktion
Ψ(x, t) in ein Produkt aus einer nur vom Ort x abhängigen Funktion ψ(x) und einer nur von der Zeit
t abhängigen Funktion ϕ(t) zu zerlegen.

Im Falle eines nur vom Ort abhängigen Potenzials V (x) gelingt diese Variablenseparation. Aus der
Schrödinger-Gleichung folgt dann eine gewöhnliche DGL für ϕ(t) und die sogenannte zeitunabhängige
Schrödinger-Gleichung für ψ(x). Die so erhaltenen Lösungen der Form Ψ(x, t) = ψ(x)ϕ(t) werden
separierbare Lösungen genannt.

(b) Die Wellenfunktion Ψ(x, t) hängt vom Ort x und von der Zeit t ab, also von zwei Variablen. Eine
Ableitung kann sich nur auf x oder t, also nur auf einen Teil der Variablen beziehen. Daher sprechen
wir von einer partiellen Ableitung und zur Kennzeichnung schreiben wir dafür ∂

∂x resp. ∂
∂t .

Im Gegensatz dazu hängen die beiden Funktionen ψ(x) und ϕ(t) nur noch je von einer Variable ab.
Daher ist beim Ableiten von vornherein klar, nach welcher Variable denn differenziert wird und wir
verwenden die gewöhnliche Notation d

dx resp. d
dt .

Die Schrödinger-Gleichung ist eine partielle Differentialgleichung für die Wellenfunktion Ψ(x, t).
Das bedeutet, diese Gleichung stellt eine Verbindung zwischen der Funktion und ihren verschiedenen
partiellen Ableitungen von Ψ(x, t) her.

Anders bei der Zeitgleichung und der zeitunabhängigen Schrödinger-Gleichung, die gewöhnliche Dif-

ferentialgleichungen für ψ(x) resp. ϕ(t) sind.
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(c) Ist das Potenzial V (x) nur vom Ort abhängig, so ergibt sich aus der Schrödinger-Gleichung mittels
Variablenseparation Ψ(x, t) = ψ(x)ϕ(t) die folgende Gleichung:

i~
1

ϕ

dϕ

dt
= − ~

2

2m

1

ψ

d2ψ

dx2
+ V

In dieser Gleichung ist die linke Seite nur von der Zeit t, die rechte hingegen ausschließlich vom Ort
x abhängig. Beide Variablen können aber völlig unabhängig voneinander verändert werden, denn die
Wellenfunktion hat an jedem Ort x zu jedem beliebigen Zeitpunkt t einen bestimmten Wert. Es gibt
keine Einschränkungen für x oder t. Dann kann diese Gleichung aber nur dann richtig sein, wenn beide
Gleichungsseiten gleich ein- und derselben Konstante sind, die wir eben als Separationskonstante

bezeichnen und die wir im Falle der Schrödinger-Gleichung mit dem Buchstaben E notieren.

(d) Die Zeitgleichung ist die für eine Exponentialfunktion typische Differentialgleichung, in der die Ablei-
tung der Funktion proportional zur Funktion selber ist. Es ist also zu erwarten, dass ϕ(t) = Ae−iEt/~

die Differentialgleichung erfüllt:

dϕ

dt
=

d

dt

(
A · e−iEt/~

)
= − iE

~
· e−iEt/~ = − iE

~
ϕ

Nun ist ϕ(t) ja nur ein Faktor der gesamten separierbaren Lösung Ψ(x, t) = ψ(x)ϕ(t). Eine solche
Lösung muss aber insgesamt normiert werden. D.h., es braucht nur eine Normierung für Ψ(x, t) und
nicht je eine für ψ(x) und ϕ(t). D.h., es ist an dieser Stelle nicht nötig sich um die Normierung von
ϕ(t) und damit um eine Festlegung von A zu bemühen.

Die Sache ist sogar noch besser, denn |e−iEt/~| = 1 für alle Zeiten t. D.h., wenn wir die Zeitfunk-
tion durch ϕ(t) = e−iEt/~ definieren, spielt sie bei der Normierung von Ψ(x, t) gar keine Rolle. Die
Normierung kann dann direkt mit dem ortsabhängigen Teil ψ(x) vorgenommen werden.

5. ◦◦ Normierungserhaltung aufgrund der Schrödinger-Gleichung

(a) Wenn die Normierung erhalten bleibt, so muss das Normierungsintegral
∫ +∞

−∞
|Ψ(x, t)|2 dx zeitlich

konstant sein. Es gilt also zu zeigen, dass:

d

dt

(∫ +∞

−∞

|Ψ(x, t)|2 dx
)

= 0

(b) Wir führen beide Rechnungen separat aus und überzeugen uns davon, dass das Resultat dasselbe ist:

d

dt

(∫ +∞

1
A · t

2

x2
dx

)
=

d

dt

(
At2

∫ +∞

1

1

x2
dx

)
=

d

dt

(
At2 ·

[−1

x

] ∣∣∣∣
+∞

1

)

=
d

dt

(
At2 ·

(
0− −1

1

))
=

d

dt

(
At2
)
= 2At

∫ +∞

1

∂

∂t

(
A · t

2

x2

)
dx =

∫ +∞

1

2At

x2
dx = 2At

∫ +∞

1

1

x2
dx

= 2At

[−1

x

] ∣∣∣∣
+∞

1

= 2At

(
0− −1

1

)
= 2At X

(c) Für die Ableitung nach der Zeit folgt mit der Produktregel:

∂

∂t

(
Ψ

∗·Ψ
)
=
∂Ψ∗

∂t
Ψ +Ψ

∗
∂Ψ

∂t
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(d) Wir wollen die Richtigkeit der konjugierten Gleichung unter Verwendung der ursprünglichen Gleichung
nachweisen. Dazu führen wir zuerst ein paar Umformungen durch:

z∗1 = z∗2 − iz∗3 + iz∗4 |Summenschreibweise verwenden

⇔ (x1 + iy1)
∗ = (x2 + iy2)

∗ − i(x3 + iy3)
∗ + i(x4 + iy4)

∗ |Konjugation ausführen

⇔ x1 − iy1 = x2 − iy2 − i(x3 − iy3) + i(x4 − iy4) | ausmultiplizieren

⇔ x1 − iy1 = x2 − iy2 − ix3 − y3 + ix4 + y4

Auf beiden Seiten der Gleichung steht nun je eine komplexe Zahl. Diese sind genau dann identisch,
wenn sowohl ihre Real-, als auch ihre Imaginärteile übereinstimmen (“Identifikationstrick”). Es handelt
sich also eigentlich um zwei Gleichungen, die beide richtig sein müssen:

∣∣∣∣
x1 = x2 − y3 + y4

−y1 = −y2 − x3 + x4

∣∣∣∣

Wenn wir die ursprüngliche Gleichung anschauen, so finden wir auf dieselbe Weise:

z1 = z2 + iz3 − iz4 |Summenschreibweise verwenden

⇔ x1 + iy1 = x2 + iy2 + i(x3 + iy3)− i(x4 + iy4) | ausmultiplizieren

⇔ x1 + iy1 = x2 + iy2 + ix3 − y3 − ix4 + y4

Auch daraus generieren wir mittels Identifikationstrick zwei Gleichungen:

∣∣∣∣
x1 = x2 − y3 + y4
y1 = y2 + x3 − x4

∣∣∣∣

Multiplizieren wir die untere Gleichung mit (−1), so landen wir wieder bei denselben beiden Gleichun-
gen, die auch in der konjugierten Gleichung enthalten sind. Stimmt also die ursprüngliche Gleichung,
so stimmt auch die konjugierte Gleichung.

(e) Mit dem Rezept “Jedes i mit einem negativen Vorzeichen versehen und alle Wellenfunktionswerte

Ψ komplex konjugieren” können wir nun die konjugierte Schrödinger-Gleichung aus der normalen
Schrödinger-Gleichung herleiten:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ VΨ | i → (−i) und Ψ → Ψ

∗

⇔ −i~
∂Ψ∗

∂t
= − ~

2

2m

∂2Ψ∗

∂x2
+ VΨ

∗

(f) Zunächst dividieren wir beide Varianten der Schrödinger-Gleichung durch i~ resp. durch −i~:

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ VΨ ⇔ ∂Ψ

∂t
= − ~

i2m

∂2Ψ

∂x2
+
V

i~
Ψ =

i~

2m

∂2Ψ

∂x2
− iV

~
Ψ

−i~
∂Ψ∗

∂t
= − ~

2

2m

∂2Ψ∗

∂x2
+ V Ψ

∗ ⇔ ∂Ψ∗

∂t
=

~

i2m

∂2Ψ∗

∂x2
− V

i~
Ψ

∗ = − i~

2m

∂2Ψ∗

∂x2
+

iV

~
Ψ

∗

Dabei habe ich die Brüche bei den letzten Umformungen rechts jeweils mit i erweitert.
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Nun können wir die erhaltenen Ausdrücke für ∂Ψ
∂t und ∂Ψ∗

∂t in den Integralausdruck einsetzen:

∫ +∞

−∞

(
∂Ψ∗

∂t
Ψ +Ψ

∗
∂Ψ

∂t

)
dx =

∫ +∞

−∞

((
− i~

2m

∂2Ψ∗

∂x2
+

iV

~
Ψ

∗

)
Ψ +Ψ

∗

(
i~

2m

∂2Ψ

∂x2
− iV

~
Ψ

))
dx

=

∫ +∞

−∞

(
− i~

2m

∂2Ψ∗

∂x2
Ψ +

iV

~
Ψ

∗
Ψ +

i~

2m
Ψ

∗
∂2Ψ

∂x2
− iV

~
Ψ

∗
Ψ

)
dx

=

∫ +∞

−∞

(
− i~

2m

∂2Ψ∗

∂x2
Ψ +

i~

2m
Ψ

∗
∂2Ψ

∂x2

)
dx

=
i~

2m

∫ +∞

−∞

(
Ψ

∗
∂2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

)
dx

Wir stellen fest, dass sich bei dieser Umformung das Potenzial V komplett herausgestrichen hat. Das
bedeutet auch, die Normierungserhaltung funktioniert bei jedem beliebigen Potenzial V !

(g) Wir leiten ganz einfach ab und überzeugen uns so von der geforderten Gleichheit:

∂

∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
=

∂

∂x

(
Ψ

∗
∂Ψ

∂x

)
− ∂

∂x

(
∂Ψ∗

∂x
Ψ

)

=
∂Ψ∗

∂x

∂Ψ

∂x
+Ψ

∗
∂2Ψ

∂x2
−
(
∂2Ψ∗

∂x2
Ψ +

∂Ψ∗

∂x

∂Ψ

∂x

)

=
∂Ψ∗

∂x

∂Ψ

∂x
+Ψ

∗
∂2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ − ∂Ψ∗

∂x

∂Ψ

∂x
= Ψ

∗
∂2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

(h) Unter dem Integral über dx steht eine Ableitung nach der Variabel x. Das bedeutet, hinter dieser
Ableitung steht bereits die Stammfunktion, die für die Berechnung des Integrals aufgespürt werden
muss. Es gilt also automatisch:

∫ +∞

−∞

∂

∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx =

[
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

] ∣∣∣∣
+∞

−∞

(i) Wenn wir die Integrationsgrenzen in die Stammfunktion einsetzen, entsteht aufgrund des verschwin-
denden Wertes von Ψ im Unendlichen stets der Wert 0. Somit ist die zeitliche Ableitung des Normie-
rungsintegrals gleich 0. Die Normierung bleibt demnach zeitlich konstant und somit erhalten. Genau
das wollten wir ja beweisen.

Zum Schluss dieser Aufgabe notiere ich den gesamten Beweis noch als eine einzige Rechnung, von der du
nun alle Schritte grundsätzlich verstehst. Alle Integrale gehen jeweils von −∞ bis +∞, sodass ich diese
Ränder nicht jedesmal notiert habe:

d

dt

(∫ +∞

−∞

|Ψ(x, t)|2 dx
)

=

∫
∂

∂t
|Ψ(x, t)|2 dx =

∫
∂

∂t

(
Ψ

∗
Ψ
)
dx =

∫ (
∂Ψ∗

∂t
Ψ +Ψ

∗
∂Ψ

∂t

)
dx

=

∫ ((
− i~

2m

∂2Ψ∗

∂x2
+

iV

~
Ψ

∗

)
Ψ +Ψ

∗

(
i~

2m

∂2Ψ

∂x2
− iV

~
Ψ

))
dx

=

∫ (
− i~

2m

∂2Ψ∗

∂x2
Ψ +

iV

~
Ψ

∗
Ψ +Ψ

∗
i~

2m

∂2Ψ

∂x2
− iV

~
Ψ

∗
Ψ

)
dx

=

∫ (
− i~

2m

∂2Ψ∗

∂x2
Ψ +Ψ

∗
i~

2m

∂2Ψ

∂x2

)
dx =

i~

2m

∫ (
Ψ

∗
∂2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

)
dx

=
i~

2m

∫
∂

∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx =

i~

2m

[
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

] ∣∣∣∣
+∞

−∞

=
i~

2m
(0− 0) = 0 q.e.d.
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6. ◦◦ Die Herleitung des Impulsoperators

(a) Wir führen die zwei vorgeschlagenen Schritte aus:

d〈x〉
dt

=
d

dt

(∫ +∞

−∞

x |Ψ(x, t)|2 dx
)

i.
=

∫ +∞

−∞

∂

∂t

(
x |Ψ(x, t)|2

)
dx

ii.
=

∫ +∞

−∞

x
∂

∂t

(
|Ψ(x, t)|2

)
dx

Bei i. wird aus der gewöhnlichen Ableitung d
dt eine partielle Ableitung ∂

∂t , denn unter dem Integral
bezieht sich diese Ableitung auf die von x abhängige Funktion x|Ψ(x, t)|2, währenddem das anfängliche
Integral nur eine Funktion der Zeit t ist (weil über x bereits integriert wird).

Bezüglich der Ableitung nach der Zeit ist x allerdings einfach eine multiplikative Konstante, die im
Schritt ii. als Faktor vor die Ableitung gezogen werden darf.

(b) Wir schreiben nun mit dem grösseren Umformungsschritt aus Aufgabe 5 zunächst:

d〈x〉
dt

=

∫ +∞

−∞

x
∂

∂t

(
|Ψ(x, t)|2

)
dx =

i~

2m

∫ +∞

−∞

x · ∂
∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx

Nun fassen wir die beiden Faktoren unter dem Integral als eigene Funktionen f(x) und g′(x) auf:

f(x) = x und g(x) = Ψ
∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ mit g′(x) =

∂

∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)

Da wir mit g(x) die Stammfunktion von g′(x) kennen, werden wir durch partielle Integration den
Faktor x los, denn f(x) = x ⇒ f ′(x) = 1:

∫ +∞

−∞

x︸︷︷︸
= f(x)

· ∂

∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)

︸ ︷︷ ︸
= g′(x)

dx

=
[
f(x) g(x)

]∣∣∣
+∞

−∞

−
∫ +∞

−∞

f ′(x) g(x) dx

=

[
x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)] ∣∣∣∣
+∞

−∞

−
∫ +∞

−∞

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx

(c) Wie in der Aufgabenstellung erläutert, verschwindet das erste Glied in obigem Ausdruck. Somit finden
wir bis hierhin:

d〈x〉
dt

=
i~

2m

∫ +∞

−∞

x · ∂
∂x

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx = − i~

2m

∫ +∞

−∞

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx

(d) Wir nehmen dieses bisherige Resultat in zwei Integrale auseinander:

d〈x〉
dt

= − i~

2m

∫ +∞

−∞

(
Ψ

∗
∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx = − i~

2m

(∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx−

∫ +∞

−∞

∂Ψ∗

∂x
Ψ dx

)

Tatsächlich lässt sich zeigen, dass beide Integrale denselben Wert aufweisen. Dazu wandle ich das
zweite Integral mittels partieller Integration in das erste um:

∫ +∞

−∞

∂Ψ∗

∂x︸ ︷︷ ︸
= g′(x)

· Ψ︸︷︷︸
= f(x)

dx =
[
g(x)f(x)

]∣∣∣
+∞

−∞

−
∫ +∞

−∞

g(x)f ′(x) dx = [Ψ∗
Ψ ]

∣∣∣∣
+∞

−∞

−
∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx

= 0−
∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx = −

∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx
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Somit ergibt sich als neues Zwischenresultat:

d〈x〉
dt

= − i~

2m

(∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx−

∫ +∞

−∞

∂Ψ∗

∂x
Ψ dx

)

= − i~

2m

(∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx+

∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx

)
= − i~

m

∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx

(e) Somit ergibt sich für den Erwartungswert des Impulses:

〈p〉 = m〈v〉 = m · d〈x〉
dt

= m ·
(
− i~

m

∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx

)
=

~

i

∫ +∞

−∞

Ψ
∗
∂Ψ

∂x
dx

=

∫ +∞

−∞

Ψ
∗

(
~

i

∂

∂x

)
Ψ dx

!
=

∫ +∞

−∞

Ψ
∗ p̂Ψ dx

Dabei habe ich beim letzten Schritt auf der ersten Zeile verwendet, dass −i = 1
i .

Nun können wir für den Impulsoperator p̂ identifizieren:

p̂ =
~

i

∂

∂x

Damit sind wir am Ende dieser Aufgabe angelangt.
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