Ubungen zum physikalischen Erginzungsfach
Serie 11: Operatoren, Unscharferelation und Variablenseparation —
LOSUNGEN

1. ee Rund um Operatoren

(a) Fiir den Operator der quadratischen kinetischen Energie erhalten wir:

,\ ~2\ 2 4 4
T2 — p_ — L h a — h_ . 8_
2m 4m? i 0z 4m?2 Ozt
Dabei haben wir verwendet, dass i* = 1 ist.

(b) Wir benutzen irgendeine Testfunktion f(z,¢) um darauf den Kommutator von Orts- und Impulsope-
rator anzuwenden:

Wir sehen, wie im ersten Glied die Ableitung des Impulsoperators nur auf die Funktion f angewendet
wird, wahrend beim zweiten Operator das Produkt aus x und der Funktion f abgeleitet wird, wobei
die Produktregel zur Anwendung kommt:
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Damit haben wir nun gesehen, dass der Kommutator des Ortsoperators selber ein Operator ist, der eine
beliebige Funktion einfach mit iA multipliziert, wenn er darauf angewendet wird. In Kurzformschreiben
wir:

Entscheidend ist, dass dies von 0 verschieden ist. Wir sagen: “Der Orts- und der Impulsoperator
vertauschen nicht miteinander.”

2. ee Der Grundzustand des quantenmechanischen harmonischen Oszillators
(a) Fir die Normierung bendtigen wir das Betragsquadrat der Wellenfunktion:
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Setzen wir A = Q‘ITT” so ergibt sich mit dem in der Aufgabenstellung angegebenen Integralwert:
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Die Wellenfunktion ¥(z,t) und ihr Betragsquadrat | ¥ (x,t)|? lauten somit:
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U(z,t) = { %-e—aﬁmﬁ/ﬁ)ﬂﬂ und | U(z,t)]? = _7‘:2”‘ . g2ama? [

Beim Graphen von | ¥|? handelt es sich um eine Gauss’sche Glockenkurve.



(b) Fiir das Einsetzen von W(x,t) in die Schrodinger-Gleichung dient es der Ubersichtlichkeit, die partiellen
Ableitung bereits vorher zu erledigen. Da sich die unter (a) ermittelte Normierungskonstante A beim
spateren Einsetzen in die Schrodinger-Gleichung ohnehin wegkiirzen muss, brauchen wir sie nicht
auszuschreiben:
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Mit diesen Ableitungen gehen wir in die Schrédinger-Gleichung:
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Damit haben wir ein quadratisch vom Ort z abhingiges Potenzial erhalten (keine Zeitabhingigkeit):
V(z) = 2ma’a?
Dies ist das Potenzial des harmonischen Oszillators, das in der klassischen Mechanik beispielsweise

einem Federpendel zugrunde liegt. Mit ¥ (z,t) = {/248 . e al(ma®/M+it] kennen wir nun bereits eine

Losung der Schrodinger-Gleichung zu diesem Potenzial — es ist aber nicht die einzige.

(c) Es folgen vier Erwartungswertberechnungen. Dabei benutzen wir nach der Substitution A = Q‘ITm

wiederum die in der Aufgabenstellung angegebenen Integralwerte (1) und (3), sowie beim Impuls die
unter (b) ermittelten Ableitungen:
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(d) Mit den Resultaten aus (c) berechnen wir die Standardabweichungen von Ort und Impuls:
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Daraus ergibt sich fiir das Produkt der beiden Standardabweichungen:
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Somit erfiillt die Wellenfunktion ¥ (z,t) = 4/ 2;—2” e~al(me?/M)+it] die Heisenberg’sche Unschirfere-

. h
lation 0,0, > 5 gerade noch.

(e) Wir nutzen aus, dass Hv = —%%27% + VW gerade der rechten Seite der Schrédinger-Gleichung
entspricht:
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Damit folgt fiir den Erwartungswert der Gesamtenergie:
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Zu Beginn der Aufgabe wurde gesagt, dass ¥(z,t) = \4/273—%”6*“[(7”12/5)*”} den Grundzustand des
quantenmechanischen harmonischen Oszillators beschreibt. Das bedeutet, es gibt offenbar auch ange-
regte Zustdnde eines solchen Oszillators. Der energetisch tiefste Zustand, also eben der Grundzustand,
hat aber offensichtlich nicht die Gesamtenergie 0. Auch wenn wir einen solchen Oszillator so weit wie
nur moglich abkiihlen, enthdlt er Energie — er steht also quasi nie ganz still.



Da H? einfach fiir die doppelte Anwendung des Hamiltonoperators steht, finden wir sehr ziigig:
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Somit folgt fiir die Standardabweichung der Energie:
or = \/(E2) — (E)? = /a2h? — (ah)2 =0

Es gibt also keine Streuung der Energiewerte! Befindet sich der quantenmechanische Oszillator in
seinem Grundzustand, so wird eine Messung der Gesamtenergie stets exakt den Wert ah liefern.

Es gibt also Zustiande, die den Wert bestimmter GroBen eindeutig festlegen! Das wollen wir hier
abschlieBend mitnehmen.

3. oo Freie Wahl des Nullniveaus: Klassische und Quantenmechanik im Vergleich
(a) Wir wollen Wy (z,t) = e Vot/h . @ (z,t) in die modifizierte Schrédinger-Gleichung
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einsetzen. Dabei sind in Wy, beide Faktoren e~ "Vo//" und W(x,t) von der Zeit t, aber nur ¥(z,t)
vom Ort x abhangig. Daraus folgt fiir die partiellen Ableitungen in dieser modifizierten Schrédinger-

Gleichung:
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Diese Ableitungen und Wy, = e Yo!/" . & fiigen wir in die modifizierte Schrédinger-Gleichung ein:
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Zunichst teilen wir diese Gleichung durch den Phasenfaktor e =Yt/ Danach folgt weiter:
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Dabei haben wir zuletzt verwendet, dass ¥ Ldsung der urspriinglichen Schrédinger-Gleichung
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ist. Offensichtlich erfiillt Yye,(z,t) die mit V) modifizierte Schrodinger-Gleichung.



(b)

Der Wechsel des Nullniveaus der potentiellen Energie verandert also die Wellenfunktion, indem er ihr
den Phasenfaktor e Yot/" hinzufiigt. Welche Konsequenzen ergeben sich daraus fiir die Erwartungs-
werte, die nun mit Wpey(x,t) anstelle von ¥(x,t) berechnet werden miissen?

Wir untersuchen:
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Dabei haben wir verwendet, dass der Operator @ keine Ableitung nach der Zeit t enthalt und somit
der Phasenfaktor e~ 1Yo/ als multiplikative Konstante vor den Operator genommen werden kann. Da
(e~ Vot/hyx — ¢Vot/h Liirzt sich der Phasenfaktor aus der Rechnung raus.

Damit haben wir nun aber gezeigt, dass so ein Phasenfaktor fiir die Berechnung des Erwartungswertes
einer beliebigen GroBe () gar keine Rolle spielt.

Das bedeutet: Die Verdnderung des Nullniveaus verdndert in der Quantenmechanik zwar die Wellen-
funktion — Hinzufiigen eines Phasenfaktors e ~1Y0!/" — aber diese Modifizierung hat keinen Einfluss auf
die Erwartungswerte, die sich aus der Wellenfunktion ergeben. (Selbiges lasst sich iibrigens auch fiir
die konkreten Messwerte zeigen, die man bei der Messung der GréBe () im Zustand ¥, erhalten
kdnnte. Das erahnen wir an dieser Stelle, denn wenn der Mittelwert dieser Messwerte gleich bleibt,
dann diirfte das eben daraus folgen, dass auch die Einzelwerte nach wie vor dieselben sind.) Somit ist
auch in der Quantenmechanik eine freie Wahl des Nullniveaus der potentiellen Energie gewahrleistet.

4. ee Zum mathematischen Verstandnis separierbarer Ldsungen

(a)

Beim Losen der Schrédinger-Gleichung (resp. ganz allgemein beim Ldsen einer partiellen DGL) ist die
Variablenseparation

V(z,t) =(x) - p(t)

ein sinnvoller Lésungsansatz. Die ldee ist, die von den beiden Variablen x und ¢ abhangige Funktion
¥ (x,t) in ein Produkt aus einer nur vom Ort = abhangigen Funktion 1(x) und einer nur von der Zeit
t abhangigen Funktion ¢(t) zu zerlegen.

Im Falle eines nur vom Ort abhangigen Potenzials V (z) gelingt diese Variablenseparation. Aus der
Schrédinger-Gleichung folgt dann eine gewdhnliche DGL fiir () und die sogenannte zeitunabhéngige
Schrédinger-Gleichung fiir ¢(x). Die so erhaltenen Lésungen der Form ¥(z,t) = 1(x)p(t) werden
separierbare Losungen genannt.

Die Wellenfunktion ¥(z,t) hangt vom Ort x und von der Zeit ¢ ab, also von zwei Variablen. Eine
Ableitung kann sich nur auf x oder ¢, also nur auf einen Teil der Variablen beziehen. Daher sprechen
wir von einer partiellen Ableitung und zur Kennzeichnung schreiben wir dafiir 8% resp. %.

Im Gegensatz dazu hiangen die beiden Funktionen v (z) und ¢(t) nur noch je von einer Variable ab.
Daher ist beim Ableiten von vornherein klar, nach welcher Variable denn differenziert wird und wir

. . . . d d
verwenden die gewdhnliche Notation - resp. ;.

Die Schrédinger-Gleichung ist eine partielle Differentialgleichung fiir die Wellenfunktion ¥ (z,t).
Das bedeutet, diese Gleichung stellt eine Verbindung zwischen der Funktion und ihren verschiedenen
partiellen Ableitungen von ¥(z,t) her.

Anders bei der Zeitgleichung und der zeitunabhangigen Schrodinger-Gleichung, die gewdhnliche Dif-
ferentialgleichungen fiir ¢)(x) resp. ¢(t) sind.



(c) Ist das Potenzial V' (z) nur vom Ort abhangig, so ergibt sich aus der Schrédinger-Gleichung mittels

Variablenseparation ¥ (x,t) = ¢(x)p(t) die folgende Gleichung:
ih l d_gp — _h_2 l (12_1/} + V
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In dieser Gleichung ist die linke Seite nur von der Zeit t, die rechte hingegen ausschlieBlich vom Ort
x abhangig. Beide Variablen kénnen aber vollig unabhangig voneinander verandert werden, denn die
Wellenfunktion hat an jedem Ort x zu jedem beliebigen Zeitpunkt ¢ einen bestimmten Wert. Es gibt
keine Einschriankungen fiir z oder t. Dann kann diese Gleichung aber nur dann richtig sein, wenn beide
Gleichungsseiten gleich ein- und derselben Konstante sind, die wir eben als Separationskonstante
bezeichnen und die wir im Falle der Schrédinger-Gleichung mit dem Buchstaben E notieren.

(d) Die Zeitgleichung ist die fiir eine Exponentialfunktion typische Differentialgleichung, in der die Ablei-
tung der Funktion proportional zur Funktion selber ist. Es ist also zu erwarten, dass ¢(t) = Ae 1Et/h
die Differentialgleichung erfiillt:
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Nun ist ¢(t) ja nur ein Faktor der gesamten separierbaren Losung ¥(x,t) = 1 (z)p(t). Eine solche
Lésung muss aber insgesamt normiert werden. D.h., es braucht nur eine Normierung fiir ¥(x,t) und
nicht je eine fiir )(x) und ¢(t). D.h., es ist an dieser Stelle nicht nétig sich um die Normierung von
©(t) und damit um eine Festlegung von A zu bemiihen.

Die Sache ist sogar noch besser, denn |e~#%/7| = 1 fiir alle Zeiten t. D.h., wenn wir die Zeitfunk-
tion durch o(t) = e "F4/" definieren, spielt sie bei der Normierung von ¥(z,t) gar keine Rolle. Die
Normierung kann dann direkt mit dem ortsabhangigen Teil ¢(z) vorgenommen werden.

5. oo Normierungserhaltung aufgrund der Schrédinger-Gleichung

(a) Wenn die Normierung erhalten bleibt, so muss das Normierungsintegral [*°°| ¥ (z,¢)|? dz zeitlich
konstant sein. Es gilt also zu zeigen, dass:
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(b) Wir fiihren beide Rechnungen separat aus und iiberzeugen uns davon, dass das Resultat dasselbe ist:

d [ [T d [ o [T1 d{ , [-17]"
a<1 A‘ﬁ“)‘@(“/l ﬁdﬂ”>—a<m'[ﬂl

+OOa t2 +OO2At Jrc>c>1

2|

T

:2At<0———1> =2At V
1 1

(c) Fiir die Ableitung nach der Zeit folgt mit der Produktregel:
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(d) Wir wollen die Richtigkeit der konjugierten Gleichung unter Verwendung der urspriinglichen Gleichung
nachweisen. Dazu fiihren wir zuerst ein paar Umformungen durch:

2] =25 —iz3 +1iz) | Summenschreibweise verwenden
& (1 +iy)" = (ro +iy2)* —i(xs +1iy3)* +i(xs +1iya)* | Konjugation ausfiihren
& x1 — iy = x9 — iyo — i(wg — iy3) + (x4 — iys) | ausmultiplizieren
< Tl —1y1 =22 — iy —ilr3 — Y3 +izra +ya
Auf beiden Seiten der Gleichung steht nun je eine komplexe Zahl. Diese sind genau dann identisch,

wenn sowohl ihre Real-, als auch ihre Imaginarteile tibereinstimmen (“ldentifikationstrick” ). Es handelt
sich also eigentlich um zwei Gleichungen, die beide richtig sein miissen:

T1=x2— Y3+ Y4
—Y1 = —Y2 — T3+ 14

Wenn wir die urspriingliche Gleichung anschauen, so finden wir auf dieselbe Weise:

Z1 = 29 + 123 — izy4 | Summenschreibweise verwenden
& w1+ iy1 = w9 +iye +i(x3 + iys3) — i(xg +iys) | ausmultiplizieren

& Ty tiy; =z tiys +irs —ys —izg +ya
Auch daraus generieren wir mittels Identifikationstrick zwei Gleichungen:

1 =x2— Y3+ Y4
Y1 = Y2+ T3 — T4

Multiplizieren wir die untere Gleichung mit (—1), so landen wir wieder bei denselben beiden Gleichun-
gen, die auch in der konjugierten Gleichung enthalten sind. Stimmt also die urspriingliche Gleichung,
so stimmt auch die konjugierte Gleichung.

(e) Mit dem Rezept “Jedes i mit einem negativen Vorzeichen versehen und alle Wellenfunktionswerte
¥ komplex konjugieren” kdnnen wir nun die konjugierte Schrodinger-Gleichung aus der normalen
Schrédinger-Gleichung herleiten:
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(f) Zuné&chst dividieren wir beide Varianten der Schrédinger-Gleichung durch i resp. durch —ih:
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Dabei habe ich die Briiche bei den letzten Umformungen rechts jeweils mit i erweitert.



Nun kénnen wir die erhaltenen Ausdriicke fiir 2 at und ‘(N in den Integralausdruck einsetzen:
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Wir stellen fest, dass sich bei dieser Umformung das Potenzial V' komplett herausgestrichen hat. Das
bedeutet auch, die Normierungserhaltung funktioniert bei jedem beliebigen Potenzial V!

(g) Wir leiten ganz einfach ab und iiberzeugen uns so von der geforderten Gleichheit:
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(h) Unter dem Integral iiber dx steht eine Ableitung nach der Variabel x. Das bedeutet, hinter dieser
Ableitung steht bereits die Stammfunktion, die fiir die Berechnung des Integrals aufgespiirt werden
muss. Es gilt also automatisch:
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(i) Wenn wir die Integrationsgrenzen in die Stammfunktion einsetzen, entsteht aufgrund des verschwin-
denden Wertes von ¥ im Unendlichen stets der Wert 0. Somit ist die zeitliche Ableitung des Normie-
rungsintegrals gleich 0. Die Normierung bleibt demnach zeitlich konstant und somit erhalten. Genau
das wollten wir ja beweisen.

Zum Schluss dieser Aufgabe notiere ich den gesamten Beweis noch als eine einzige Rechnung, von der du
nun alle Schritte grundsatzlich verstehst. Alle Integrale gehen jeweils von —oo bis +00, sodass ich diese
Rander nicht jedesmal notiert habe:
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6. oo Die Herleitung des Impulsoperators

(a) Wir fiihren die zwei vorgeschlagenen Schritte aus:

dio) _ d </+Oox|W(:U,t)|2d:c> i /+m%(x|sp(x,t)|2)dx i /J:ox%UW(:U,t)F)dx

at dt \J_ s

Bei i. wird aus der gewdchnlichen Ableitung % eine partielle Ableitung %, denn unter dem Integral
bezieht sich diese Ableitung auf die von z abhingige Funktion x| ¥ (x,t)|?, wihrenddem das anfingliche
Integral nur eine Funktion der Zeit ¢ ist (weil iiber = bereits integriert wird).

Beziiglich der Ableitung nach der Zeit ist = allerdings einfach eine multiplikative Konstante, die im
Schritt ii. als Faktor vor die Ableitung gezogen werden darf.

(b) Wir schreiben nun mit dem grosseren Umformungsschritt aus Aufgabe 5 zunichst:

d(x) [ o ih [T 9 (0w 9w

Nun fassen wir die beiden Faktoren unter dem Integral als eigene Funktionen f(z) und ¢'(x) auf:

B L0 0w LN O (0 0w
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Da wir mit g(z) die Stammfunktion von ¢'(z) kennen, werden wir durch partielle Integration den
Faktor z los, denn f(z) =2 = f'(z) =1
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(c) Wie in der Aufgabenstellung erliutert, verschwindet das erste Glied in obigem Ausdruck. Somit finden
wir bis hierhin:
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(d) Wir nehmen dieses bisherige Resultat in zwei Integrale auseinander:
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Tatsachlich l3sst sich zeigen, dass beide Integrale denselben Wert aufweisen. Dazu wandle ich das
zweite Integral mittels partieller Integration in das erste um:
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Somit ergibt sich als neues Zwischenresultat:
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(e) Somit ergibt sich fiir den Erwartungswert des Impulses:
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+oo +o0
:/ w* <§3> v da é/ Ut 5w dr
oo iox oo

Dabei habe ich beim letzten Schritt auf der ersten Zeile verwendet, dass —i =
Nun kdnnen wir fiir den Impulsoperator p identifizieren:

Damit sind wir am Ende dieser Aufgabe angelangt.
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