
Übungen zum physikalischen Ergänzungsfach

Serie 11: Operatoren, Unschärferelation und Variablenseparation

• Basic – Dinge, die du einfach gesehen und bearbeitet haben musst → obligatorisch!
•• Die Essenz – zentrale Aufgabe für das grundlegende Verständnis → obligatorisch!
◦ Noch ein Beispiel – Zusatzaufgabe mit weiterer Anwendung zur Vertiefung → fakultativ!

◦◦ Du willst es? Du kriegst es! – längere, weiterführende Aufgabe mit neuen Inhalten → fakultativ!

1. •• Rund um Operatoren

Im Buch von Griffiths haben wir den Begriff des Operators kennengelernt. Dieser ist stets als Anweisung
zur Modifikation einer Funktion zu verstehen. Das bedeutet, Operatoren verändern die dahinter stehende
Funktion auf eine bestimmte Art und Weise. Zur besseren Unterscheidung von normalen Variablen werden
Operatoren oft mit einem Hütchen gekennzeichnet. Z.B. könnte ich die Operatoren

âf(x) := f(x) + 3 und b̂f(x) := 2 · f(x)

definieren, die die dahinter notierte Funktion modifizieren, indem die Zahl 3 hinzuaddiert oder die ganze
Funktion mit dem Faktor 2 multipliziert wird. Durch die Anwendung eines Operators wird aus einer
bisherigen Funktion f also einfach eine neue Funktion âf erzeugt.

Der Ortsoperator x̂ ist recht vergleichbar mit obigem Multiplikationsoperator b̂:

x̂f(x) := x · f(x)

Anders sieht es mit dem Impulsoperator p̂ aus. Hierbei handelt es sich nämlich um einen sogenannten
Differentialoperator, der die Funktion nach dem Ort ableitet:

p̂f(x) :=
h

i

∂

∂x
f(x) =

h

i

∂f

∂x

(a) Im Buch von Griffiths haben wir im Abschnitt 1.5 Impuls gelernt, dass sich jede klassische mechani-
sche Variable aus Ort x und Impuls p = mv zusammensetzen lässt. Griffiths führt dort das Beispiel
der kinetischen Energie an:

T =
mv2

2
=

p2

2m

Dem entsprechend kann zu jeder klassischen Größe ein Operator angegeben werden, der sich aus
〈x〉 und 〈p〉 zusammensetzt.

Wenn wir nun von einem Teilchen in Zustand Ψ die Varianz σ2T der kinetischen Energie bestimmen
möchten, so brauchen wir dafür nicht nur 〈T 〉, sondern auch 〈T 2〉, weil σ2T = 〈T 2〉 − 〈T 〉2.

Wie sehen denn die quantenmechanischen Operatoren T̂ und T̂ 2 aus?

(b) Als Kommutator zweier Operatoren Â und B̂ definieren wir den Ausdruck

[Â, B̂ ] := Â B̂ − B̂ Â

Für die Quantenphysik ist von Interesse – weshalb, werden wir später sehen – ob die Operatoren Â
und B̂ zu zwei Grössen A und B miteinander vertauschen. Damit meint man, dass ihr Kommutator
verschwindet, also 0 ergibt.

Zeige, dass der Kommutator des Orts- und des Impulsoperators nicht gleich 0 ist.

Hinweis 1: Operatoren ergeben für sich alleine keinen echten Sinn. Sie müssen schon auf eine Funk-
tion f angewendet werden. Benutze also eine beliebige Funktion f(x, t), auf die du den Kommutator
[x̂, p̂ ] anwendest.

Hinweis 2: Der Kommutator [x̂, p̂ ] ist selber wieder ein Operator. Wie lautet er?
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2. •• Der Grundzustand des quantenmechanischen harmonischen Oszillators

Hier geht es um die Aufgabe 1.9 auf Seite 41 im QM-Buch von Griffiths. Zum ersten Mal lernen wir
eine wirklich bedeutsame Wellenfunktion Ψ kennen:

Ψ(x, t) = A · e−a
[
(mx2/~)+it

]
= A · e−amx2/~ · e−iat

Wie wir noch sehen werden, handelt es sich hierbei um den Grundzustand des harmonischen Oszilla-
tors, also des “quantenmechanischen Federpendels”.

Gehe die Aufgaben (a) bis (d) durch und löse danach auch noch die Aufgabe (e) unten.

Die folgenden Tipps sind sicher hilfreich:

• Bei (a) geht es um die Normierung. Mittlerweile solltest du wissen, wie sowas gemacht wird. Der
Stolperstein ist allenfalls die Berechnung des Integrals. Verwende dazu, dass gilt:

∫ +∞

−∞
e−λx2

dx =

√
π

λ
mit λ > 0 (1)

Aus |Ψ |2 dx = . . . = A2
∫
e−2amx2/~ schliesst du, dass λ = 2am

~
zu setzen ist.

• Zu (b): Berechne vorab die partiellen Ableitungen ∂Ψ
∂t und ∂2

Ψ

∂x2 und notiere sie in einer Form mit
der Wellenfunktion Ψ als Faktor. Danach müssen diese Ableitungen in die Schrödinger-Gleichung

i~
∂Ψ

∂t
= −

~
2

2m

∂2Ψ

∂x2
+ V (x)Ψ (2)

eingesetzt werden, um einen Ausdruck für V (x) zu gewinnen. Da die Wellenfunktion Ψ nun nur
noch ein Faktor ist, kann sie komplett aus der Gleichung herausgestrichen werden und löst diese
somit genau dann, wenn V (x) eben ein bestimmter von x abhängiger Ausdruck ist.

• Bei den Berechnungen von 〈x〉, 〈x2〉 und 〈p〉 verwendest du zusätzlich zu (1) die folgenden Integrale:
∫ +∞

−∞
x e−λx2

dx = 0 und

∫ +∞

−∞
x2 e−λx2

dx =
1

2λ

√
π

λ
mit λ > 0 (3)

• Bei der Berechnung von 〈p2〉 solltest du einerseits auf deine Ableitung ∂2
Ψ

∂x2 , sowie andererseits auf
deine Vorarbeit bei der Berechnung von 〈x2〉 zurückgreifen.

• Berechnung der Standardabweichungen: σx =
√

〈x2〉 − 〈x〉2 resp. σp =
√

〈p2〉 − 〈p〉2.

(e) Berechne den Erwartungswert und Standardabweichung der Gesamtenergie und erläutere
anschließend die Bedeutung dieser Resultate.

Die Gesamtenergie setzt sich aus kinetischer und potentieller Energie zusammen. Die klassische

kinetische Energie ist p2

2m , woraus in der Quantenmechanik mit dem Impulsoperator ~

i
∂
∂x der Operator

p̂2

2m = − ~2

2m
∂2

∂x2 wird. Der Operator für die potenzielle Energie ist einfach der Faktor V (x).

Der Operator für die Gesamtenergie, der als Hamilton-Operator oder im Englischen einfach als
Hamiltonian Ĥ bezeichnet wird, sieht demnach wie folgt aus:

Ĥ = −
~
2

2m

∂2

∂x2
+ V (x)

Bevor du irgendein Integral berechnest, solltest du diesen Hamilton-Operator auf unsere Wellen-
funktion anwenden. Das gibt fast überhaupt nichts zu tun, denn ĤΨ ist gerade die rechte Seite der
Schrödinger-Gleichung, die gleich der linken Seite sein muss. . .

Zur 〈E2 〉 sei angemerkt, dass Ĥ2 für die doppelte Anwendung des Operators Ĥ steht. Das bedeutet:

Ĥ2
Ψ = Ĥ

(
ĤΨ

)

Damit wird auch die Berechnung von 〈E2 〉 sehr einfach.
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3. ◦◦ Freie Wahl des Nullniveaus: Klassische und Quantenmechanik im Vergleich

Es geht um die Aufgabe 1.8 auf Seite 39 im QM-Buch von Griffiths.

In der klassischen Mechanik haben wir gelernt, dass wir das Nullniveau der potenziellen Energie frei
wählen dürfen. Gibt es dieses Prinzip auch in der Quantenmechanik? Falls ja, müsste uns die Schrödinger-
Gleichung diese Möglichkeit garantieren.

Nehmen wir also an, Ψ(x, t) sei die Lösung der Schrödinger-Gleichung

i~
∂Ψ

∂t
= −

~
2

2m

∂2Ψ

∂x2
+ VΨ

zu einem bestimmten Potential V (x). Was passiert nun mit Ψ(x, t), wenn wir das Nullniveau der poten-
ziellen Energie verändern, also irgendeine Konstante V0 zu V (x) hinzuaddieren?

Im Buch wird behauptet, dass die neue Wellenfunktion Ψneu(x, t) dann durch

Ψneu(x, t) = e−iV0t/~ ·Ψ(x, t)

gegeben ist. Der Vorfaktor e−iV0t/~ wird als Phasenfaktor bezeichnet.

(a) Zeige, dass obiges Ψneu(x, t) die mit V0 modifizierte Schrödinger-Gleichung

i~
∂Ψneu

∂t
= −

~
2

2m

∂2Ψneu

∂x2
+ (V + V0)Ψneu

erfüllt. Benutze dabei, dass Ψ(x, t) der ursprünglichen Schrödinger-Gleichung genügt.

(b) Untersuche, was mit dem Erwartungswert

〈Q〉 =

∫ +∞

−∞
Ψ

∗Q̂Ψ dx

einer Größe Q passiert, wenn statt Ψ nun Ψneu zu dessen Berechnung verwendet wird.

Zur Erinnerung: Jeder Operator Q̂ setzt sich aus dem Ortsoperator x̂ = x und dem Impulsoperator
p̂ = ~

i
∂
∂x zusammen. Das bedeutet, Q̂ enthält garantiert keine Ableitung nach der Zeit t.

Gib schließlich eine gut begründete Antwort auf die Frage, ob auch in der Quantenmechanik das
Nullniveau der potenziellen Energie frei gewählt werden kann.
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4. •• Zum mathematischen Verständnis separierbarer Lösungen

Die folgenden Fragen repetieren den mathematischen Inhalt der Seiten 48f im QM-Buch von Griffiths.

(a) Was ist mathematisch mit einer separierbaren Lösung (= aufteilbaren Lösung) der Schrödinger-
Gleichung gemeint?

(b) In der Schrödinger-Gleichung

i~
∂Ψ

∂t
= −

~
2

2m

∂2Ψ

∂x2
+ VΨ (4)

stehen partielle Ableitungen, also ∂
∂t und ∂

∂x , währenddem es in der “Zeitgleichung”

dϕ

dt
= −

iE

~
ϕ (5)

und in der zeitunabhängigen Schrödinger-Gleichung

−
~
2

2m

d2ψ

dx2
+ V ψ = Eψ (6)

gewöhnliche Ableitungen d
dt und d

dx sind.

Warum muss das so sein? Resp.: Was für eine Art von Gleichung ist die Schrödinger-Gleichung (4)
und wie nennt man im Gegensatz dazu die Gleichungen (5) und (6)?

(c) Wie kommt es, dass bei der Variablenseparation eine Separationskonstante – bei der Schrödinger-
Gleichung jeweils mit E bezeichnet – eingeführt werden kann/muss?

(d) Im Prinzip lautet der vollständige Funktionsansatz für die Lösung der Zeitgleichung (5):

ϕ(t) = A · e−iEt/~ (7)

Zeige erstens, dass dieser Ansatz Gleichung (5) löst, und begründe zweitens, weshalb Griffiths in der
Folge einfach A = 1 setzt resp. nur noch ϕ(t) = e−iEt/~ schreibt.
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5. ◦◦ Normierungserhaltung aufgrund der Schrödinger-Gleichung

Im Buch von Griffiths haben wir im Abschnitt 1.4 Normierung (S. 34) gelernt, dass die Schrödinger-
Gleichung selber dafür sorgt, dass eine einmal normierte Lösung Ψ(x, t) ihre Normierung beibehält,
wenn die Zeit t voranschreitet. Griffiths sagt dazu: “Ohne dieses entscheidende Merkmal wären die

Schrödinger-Gleichung und die statistische Interpretation inkompatibel, und das gesamte Theoriegebäude

würde zusammenbrechen”. Den Beweis dieser Eigenschaft haben wir im Unterricht nur kurz überflogen,
weil er mathematisch zwar interessant, aber für unser weiteres Verständnis nicht so zentral ist. Hier hast du
die Möglichkeit, dich trotzdem damit auseinanderzusetzen. Dabei siehst du, wie sehr die verschiedenen
mathematischen Werkzeuge – Differentialrechnung, komplexe Zahlen und Integrationstechniken – nun
allesamt gebraucht werden. Die Aufgabe leitet dich Schritt für Schritt durch den Beweis.

(a) Vorgabe: Die Wellenfunktion Ψ(x, t) sei eine zu irgendeinem Zeitpunkt (z.B. bei t = 0) normierte
Lösung der Schrödinger-Gleichung

i~
∂Ψ

∂t
= −

~2

2m

∂2Ψ

∂x2
+ VΨ . (8)

Wir wollen beweisen: Steuert die Schrödinger-Gleichung (8) die zeitliche Entwicklung der Wellen-
funktion Ψ(x, t), so bleibt deren Normierung erhalten.

Vorgehensweise und Ziel: Die Normierungsbedingung für Wellenfunktionen lautet:
∫ +∞

−∞
|Ψ(x, t)|2 dx = 1 . (9)

Was sollte demnach für die zeitliche Ableitung

d

dt

(∫ +∞

−∞
|Ψ(x, t)|2 dx

)
(10)

gelten, wenn die Normierung erhalten bleibt?

(b) Vertauschung von zeitlicher Ableitung und örtlichem Integral: Zu Beginn des Beweises wird
die Ableitung nach der Zeit, die eigentlich vor dem Integralzeichen steht, einfach ins Integral hin-
eingenommen:

d

dt

(∫ +∞

−∞
|Ψ(x, t)|2 dx

)
=

∫ +∞

−∞

∂

∂t
|Ψ(x, t)|2 dx (11)

Wir wollen an einem willkürlichen Beispiel (f(x, t) = A · t2

x2 ) nachvollziehen, dass eine derartige

Vertauschung des örtlichen Integrals (
∫
. . . dx) und der zeitlichen Ableitung ( d

dt) in aller Regel
problemlos funktioniert. Zeige dazu, dass die folgenden beiden Ausdrücke identisch sind, indem du
sie in der vorgegebenen Reihenfolge integrierst und ableitest:

d

dt

(∫ +∞

1
A ·

t2

x2
dx

)
und

∫ +∞

1

∂

∂t

(
A ·

t2

x2

)
dx

Beachte bei deiner Ausführung, wie sich im ersten Fall links nach der Integration ein Ausdruck F (t)
ergibt, der nicht mehr von x abhängt – schliesslich hast du über f(x, t) dx integriert. Folglich steht
dort vornedran nun die sogenannt totale Ableitung d

dt . Anders beim zweiten Fall rechts: Dort wird
die Funktion f(x, t) zuerst nach der Zeit t abgeleitet. Dabei handelt es sich zwangsläufig um eine
partielle Ableitung ∂

∂t .

(c) Ausführung der Produktregel: |Ψ(x, t)|2 ist das Betragsquadrat der komplexen Zahl Ψ(x, t).
Dabei gilt für z ∈ C stets: |z|2 = z∗z, wobei z∗ für das Konjugiert-Komplexe von z steht. Folglich
gilt es nun also zu zeigen, dass ∫ +∞

−∞

∂

∂t

(
Ψ

∗·Ψ
)
dx = 0 (12)

ist. (Zugunsten der Übersichtlichkeit lasse ich nun bei Ψ und Ψ
∗ die explizite Variablendeklaration

(x, t) weg.) Das Produkt Ψ∗·Ψ muss nach der Zeit t abgeleitet werden. Führe diese Ableitung unter
Verwendung der Produktregel aus.
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(d) Gleichungen komplex konjugieren: Die Schrödinger-Gleichung (8) erlaubt uns, die zeitliche Ablei-
tung ∂Ψ

∂t durch einen Ausdruck mit der örtlichen Ableitung ∂Ψ
∂x zu ersetzen, was uns die Möglichkeit

geben wird, das Integral tatsächlich zu berechnen. Allerdings müssen wir nicht nur ∂Ψ
∂t , sondern

auch ∂Ψ∗

∂t ersetzen.

Jede komplexe Gleichung kann sehr leicht konjugiert werden: Man versieht alle i’s mit einem
Minuszeichen und notiert anstelle der in der Gleichung enthaltenen komplexen Zahlen z

jeweils das Konjugiert-Komplexe z
∗.

Wir wollen uns die Richtigkeit dieses Vorgehens plausibel machen. Für vier komplexe Zahlen z1, z2,
z3 und z4 gelte beispielsweise:

z1 = z2 + iz3 − iz4 .

Zeige, dass dann auch gilt:
z∗1 = z∗2 − iz∗3 + iz∗4 .

Tipp: Notiere zuerst alle drei komplexen Zahlen in der Summenschreibweise z = x+ yi.

(e) Konjugierte Schrödinger-Gleichung: Verwende das Vorgehen aus (d), um die Schrödinger- Glei-
chung (8) zu konjugieren.

(f) Einsetzen der Schrödinger-Gleichungen: Verwende nun die Schrödinger-Gleichung und ihr Kon-
jugiertes, um die zeitlichen Ableitungen ∂Ψ

∂t und ∂Ψ∗

∂t in

∫ +∞

−∞

(
∂Ψ∗

∂t
Ψ +Ψ

∗ ∂Ψ

∂t

)
dx (13)

durch Ausdrücke mit örtlichen Ableitungen zu ersetzen. Vereinfache das Resultat soweit, dass

i~

2m
·

∫ +∞

−∞

(
Ψ

∗ ∂
2
Ψ

∂x2
−
∂2Ψ∗

∂x2
Ψ

)
dx (14)

dasteht. Was hat sich bei dieser Vereinfachung weggestrichen?

(g) Noch mehr Produktregel: Überzeuge dich durch Ausführung der Ableitung ∂
∂x davon, dass die

Klammer unter dem Integral in (14) durch den Ausdruck

∂

∂x

(
Ψ

∗ ∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)

ersetzt werden kann. Beachte dabei zweimal die Produktregel.

(h) Bis anhin haben wir gefunden:

d

dt

(∫ +∞

−∞
|Ψ(x, t)|2 dx

)
= . . . =

i~

2m
·

∫ +∞

−∞

∂

∂x

(
Ψ

∗ ∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)
dx (15)

Schau dir das Integral rechts genau an. Weshalb lässt sich die Stammfunktion dazu ohne zusätzliche
Rechnung sofort angeben?

(i) Insgesamt haben wir bis hierhin gefunden, dass

d

dt

(∫ +∞

−∞
|Ψ(x, t)|2 dx

)
= . . . =

i~

2m
·

(
Ψ

∗ ∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

) ∣∣∣∣
+∞

−∞

. (16)

Nun müssen vernünftige, also quadratintegrable Wellenfunktionen allerdings die Eigenschaft aufwei-
sen, dass

lim
x→±∞

Ψ(x, t) = 0 ,

weil sie sonst gar nicht normiert werden könnten. Was folgt daraus für unseren Ausdruck in (16)
und weshalb schon wieder ist damit unser Beweis abgeschlossen?
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6. ◦◦ Die Herleitung des Impulsoperators

In der Quantenmechanik lässt sich der Erwartungswert 〈Q〉 einer beliebigen Grösse Q via

〈Q〉 =

∫ +∞

−∞
Ψ

∗Q̂Ψ dx (17)

berechnen. Dabei ist Q̂ der zur Grösse Q gehörende Operator.

Besonders interessant sind der Ortsoperator x̂ = x und der Impulsoperator p̂ = ~

i
∂
∂x , weil sich aus diesen

beiden Operatoren alle weiteren Operatoren von Interesse zusammensetzen lassen.

Im Abschnitt 1.5 Impuls im QM-Buch von Griffiths (S. 37f) wird plausibel erläutert, wie man zu die-
sem Impulsoperator p̂ gelangt. Diese rechnerische Überlegung soll hier im Detail nachvollzogen werden,
weil die Mathematik in diesem Gedankengang im Buch nur grob skizziert wird, für uns aber eine gute
Lerngelegenheit darstellt.

(a) Griffiths beginnt bei der zeitlichen Ableitung d〈x〉
dt des örtlichen Erwartungswerts 〈x〉, die im Folgen-

den als Erwartungswert 〈v〉 für die Geschwindigkeit verstanden wird. Dafür notieren wir zunächst:

d〈x〉

dt
=

d

dt

(∫ +∞

−∞
x |Ψ(x, t)|2 dx

)
(18)

Mache nun zuerst zwei Schritte:

i. Nimm die Ableitung nach der Zeit ins Integral hinein (vgl. Aufgabe 5.(b)).

ii. Danach kannst du den Faktor x unter dem Integral vor die zeitliche Ableitung nehmen, weil . . .

(b) Nun erfolgt dieselbe Vereinfachung, die wir in den Schritten (c) bis (f) der Aufgabe 5 genau nach-
vollzogen haben. Zusammengefasst wird dort gezeigt, dass aus der Schrödinger-Gleichung folgt:

∂

∂t
|Ψ |2 =

i~

2m
·
∂

∂x

(
Ψ

∗∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)
(19)

Dieses Resultat setzen wir nun einfach ein und erhalten das Zwischenresultat

〈v〉 =
d〈x〉

dt
= . . . =

i~

2m
·

∫ +∞

−∞
x ·

∂

∂x

(
Ψ

∗∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)
dx (20)

Dieses Integral lässt sich aufgrund des Vorfaktors x im Integral nun nicht so direkt berechnen wie
jenes im Schritt (h) in Aufgabe 5. Allerdings können wir auch hier durchaus ausnützen, dass wir
unter dem Integral bereits eine Ableitung nach dem Ort stehen haben. Das Integral in (20) hat die
Form

∫ +∞

−∞
f(x) · g′(x) dx mit f(x) = x und g′(x) =

∂

∂x

(
Ψ

∗∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)
(21)

Das ist die perfekte Ausgangslage für eine partielle Integration, die uns ermöglichen wird, den Faktor
x loszuwerden.

Repetition zur partiellen Integration: Wir betrachten die Produktregel beim Ableiten

[
f(x) g(x)

]′
= f ′(x) g(x) + f(x) g′(x)

Integrieren wir über beide Seiten, so ergibt sich:

∫ b

a

[
f(x) g(x)

]′
dx =

∫ b

a
f ′(x) g(x) dx +

∫ b

a
f(x) g′(x) dx
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Nun steht auf der linken Seite aber das Integral über der Ableitung von f(x) g(x). Eine Stamm-
funktion dazu ist f(x) g(x) selber, woraus folgt:

[
f(x) g(x)

]∣∣∣
b

a
=

∫ b

a
f ′(x) g(x) dx +

∫ b

a
f(x) g′(x) dx

Durch Umstellen finden wir:

∫ b

a
f(x) g′(x) dx =

[
f(x) g(x)

]∣∣∣
b

a
−

∫ b

a
f ′(x) g(x) dx (22)

Diese Beziehung bezeichnet man als partielle Integration, weil von der Funktion h(x) = f(x) g′(x)
quasi nur der “Part” resp. Anteil g′(x) integriert, also aufgeleitet wird. Damit ist die Integration von
h(x) = f(x) g′(x) noch nicht abgeschlossen, vielmehr hat man das Problem auf die Berechnung
des Integrals über i(x) = f ′(x) g(x) verlagert. Dieses ist aber unter Umständen wesentlich leichter
zu berechnen, sodass sich die partielle Integration ausbezahlt.

Verwende nun die partielle Integration, um das Zwischenresultat in 20 neu zu schreiben.

(c) Bei der partiellen Integration entsteht ein Glied der Form

[
x ·

(
Ψ

∗∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)] ∣∣∣∣
+∞

−∞

(23)

Aufgrund der Quadratintegrabilität von Ψ entsteht beim Einsetzen der Grenzen −∞ und +∞ jeweils
der Wert 0, denn bei einer normierbaren Wellenfunktion Ψ muss der Funktionswert für x → ±∞
schneller stärker als 1

x gegen 0 gehen. Dieses Glied verschwindet also komplett.

Vereinfache mit dieser Information deinen bisher für 〈v〉 gefundenen Ausdruck.

(d) Ich bearbeite das bisherige Resultat weiter, indem ich das Integral – aufgrund der für Integrale
gültigen Summenregel – auf zwei Integrale verteile:

〈v〉 =
d〈x〉

dt
= . . . = −

i~

2m
·

∫ +∞

−∞

(
Ψ

∗∂Ψ

∂x
−
∂Ψ∗

∂x
Ψ

)
dx

= −
i~

2m

(∫ +∞

−∞
Ψ

∗∂Ψ

∂x
dx−

∫ +∞

−∞

∂Ψ∗

∂x
Ψ dx

)
(24)

Betrachte nur das hintere der beiden Integrale und führe damit nochmals eine partielle Integration
durch (bei der ein Glied aus bereits bekanntem Grund wieder gleich 0 ist). Dadurch müsstest du
schliesslich herausfinden, dass gilt:

〈v〉 =
d〈x〉

dt
= . . . = −

i~

m
·

∫ +∞

−∞
Ψ

∗ ∂Ψ

∂x
dx (25)

(e) Für den Erwartungswert des Impulses schreiben wir nun:

〈p〉 = m〈v〉 = . . .
!
=

∫ +∞

−∞
Ψ

∗ p̂Ψ dx (26)

Schliesse daraus mit dem Zwischenresultat (25) auf den Impulsoperator p̂.

Tipp: Nimm alle Vorfaktoren wieder ins Integral hinein und verwende 1
i = −i.
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