Ubungen zum physikalischen Ergianzungsfach
Serie 11: Operatoren, Unscharferelation und Variablenseparation

e Basic — Dinge, die du einfach gesehen und bearbeitet haben musst — obligatorisch!
ee Die Essenz — zentrale Aufgabe fiir das grundlegende Verstandnis — obligatorisch!
o Noch ein Beispiel — Zusatzaufgabe mit weiterer Anwendung zur Vertiefung — fakultativ!
oo Du willst es? Du kriegst es! — langere, weiterfiihrende Aufgabe mit neuen Inhalten — fakultativ!

1. ee Rund um Operatoren

Im Buch von Griffiths haben wir den Begriff des Operators kennengelernt. Dieser ist stets als Anweisung
zur Modifikation einer Funktion zu verstehen. Das bedeutet, Operatoren verandern die dahinter stehende
Funktion auf eine bestimmte Art und Weise. Zur besseren Unterscheidung von normalen Variablen werden
Operatoren oft mit einem Hiitchen gekennzeichnet. Z.B. kénnte ich die Operatoren

af(x) == f()+3 und  bf(z):=2- f(z)

definieren, die die dahinter notierte Funktion modifizieren, indem die Zahl 3 hinzuaddiert oder die ganze
Funktion mit dem Faktor 2 multipliziert wird. Durch die Anwendung eines Operators wird aus einer
bisherigen Funktion f also einfach eine neue Funktion af erzeugt.

Der Ortsoperator 7 ist recht vergleichbar mit obigem Multiplikationsoperator b:

zf(x) =z f(x)

Anders sieht es mit dem Impulsoperator p aus. Hierbei handelt es sich ndmlich um einen sogenannten
Differentialoperator, der die Funktion nach dem Ort ableitet:

~ h 0 hof

pfla) =5 f(2)=T5-

(a) Im Buch von Griffiths haben wir im Abschnitt 1.5 Impuls gelernt, dass sich jede klassische mechani-
sche Variable aus Ort = und Impuls p = mwv zusammensetzen lasst. Griffiths fiihrt dort das Beispiel
der kinetischen Energie an:

mv?  p?

T = = —
2 2m
Dem entsprechend kann zu jeder klassischen GroBe ein Operator angegeben werden, der sich aus
() und (p) zusammensetzt.

Wenn wir nun von einem Teilchen in Zustand ¥ die Varianz J% der kinetischen Energie bestimmen
mochten, so brauchen wir dafiir nicht nur (T"), sondern auch (T?), weil 02 = (T?) — (T2

Wie sehen denn die quantenmechanischen Operatoren T und T2 aus?

(b) Als Kommutator zweier Operatoren A und B definieren wir den Ausdruck
AB)—AiB-BA

Fir die Quantenphysik ist von Interesse — weshalb, werden wir spater sehen — ob die Operatoren A
und B zu zwei Grossen A und B miteinander vertauschen. Damit meint man, dass ihr Kommutator
verschwindet, also 0 ergibt.
Zeige, dass der Kommutator des Orts- und des Impulsoperators nicht gleich 0 ist.
Hinweis 1: Operatoren ergeben fiir sich alleine keinen echten Sinn. Sie miissen schon auf eine Funk-
tion f angewendet werden. Benutze also eine beliebige Funktion f(x,t), auf die du den Kommutator
[, p] anwendest.
Hinweis 2: Der Kommutator [z, p] ist selber wieder ein Operator. Wie lautet er?



2. ee Der Grundzustand des quantenmechanischen harmonischen Oszillators
Hier geht es um die Aufgabe 1.9 auf Seite 41 im QM-Buch von Griffiths. Zum ersten Mal lernen wir
eine wirklich bedeutsame Wellenfunktion ¥ kennen:
U(zx,t)=A- e_a[(mx2/h)+it} = A.emamz?/h  ~iat
Wie wir noch sehen werden, handelt es sich hierbei um den Grundzustand des harmonischen Oszilla-
tors, also des “quantenmechanischen Federpendels”.
Gehe die Aufgaben (a) bis (d) durch und I6se danach auch noch die Aufgabe (e) unten.
Die folgenden Tipps sind sicher hilfreich:

e Bei (a) geht es um die Normierung. Mittlerweile solltest du wissen, wie sowas gemacht wird. Der
Stolperstein ist allenfalls die Berechnung des Integrals. Verwende dazu, dass gilt:

+oo 2 ™
/ e M dzr =/~ mit A>0 (1)
—oo A
Aus |U[2dz = ... = A? [ e=20m=* /7 schliesst du, dass A = 22 zy setzen ist.
e Zu (b): Berechne vorab die partiellen Ableitungen %—f und %ng' und notiere sie in einer Form mit

der Wellenfunktion ¥ als Faktor. Danach miissen diese Ableitungen in die Schrédinger-Gleichung

WOV _ 10

ot 2m 0z?
eingesetzt werden, um einen Ausdruck fiir V(z) zu gewinnen. Da die Wellenfunktion ¥ nun nur
noch ein Faktor ist, kann sie komplett aus der Gleichung herausgestrichen werden und |6st diese

somit genau dann, wenn V (z) eben ein bestimmter von = abhangiger Ausdruck ist.

+V(z)W (2)

Bei den Berechnungen von (z), (x?) und (p) verwendest du zusitzlich zu (1) die folgenden Integrale:

+o0 +oo 1
/ ze 2 dz =0 und / g2 e dg = o\ ; mit A >0 (3)

Bei der Berechnung von (p?) solltest du einerseits auf deine Ableitung %QTf, sowie andererseits auf
deine Vorarbeit bei der Berechnung von (z?2) zuriickgreifen.

Berechnung der Standardabweichungen: o, = \/(22) — (z)? resp. o, = \/(p?) — (p)?.

(e) Berechne den Erwartungswert und Standardabweichung der Gesamtenergie und erldutere
anschlieBend die Bedeutung dieser Resultate.

Die Gesamtenergie setzt sich aus kinetischer und potentieller Energie zusammen. Die klassische

. . . . 2 . . .
kinetische Energie ist g’—m, woraus in der Quantenmechanik mit dem Impulsoperator ?8—% der Operator
=2
= = —%88—;2 wird. Der Operator fiir die potenzielle Energie ist einfach der Faktor V().

Der Operator fiir die Gesamtenergie, der als Hamilton-Operator oder im Englischen einfach als
Hamiltonian H bezeichnet wird, sieht demnach wie folgt aus:

~ n? 92
H=———+4+V
2m 02 +V(z)
Bevor du irgendein Integral berechnest, solltest du diesen Hamilton-Operator auf unsere Wellen-
funktion anwenden. Das gibt fast iiberhaupt nichts zu tun, denn H ¥ ist gerade die rechte Seite der

Schrédinger-Gleichung, die gleich der linken Seite sein muss. ..
Zur (E?) sei angemerkt, dass H? fiir die doppelte Anwendung des Operators H steht. Das bedeutet:

H*v =H(HW)

Damit wird auch die Berechnung von (E?) sehr einfach.



3. oo Freie Wahl des Nullniveaus: Klassische und Quantenmechanik im Vergleich
Es geht um die Aufgabe 1.8 auf Seite 39 im QM-Buch von Griffiths.

In der klassischen Mechanik haben wir gelernt, dass wir das Nullniveau der potenziellen Energie frei
wadhlen diirfen. Gibt es dieses Prinzip auch in der Quantenmechanik? Falls ja, miisste uns die Schrodinger-
Gleichung diese Moglichkeit garantieren.

Nehmen wir also an, ¥(x,t) sei die Lésung der Schrddinger-Gleichung

ov 2 92w
Yy
' ot 2m 8m2+v

zu einem bestimmten Potential V' (x). Was passiert nun mit ¥(z,t), wenn wir das Nullniveau der poten-
ziellen Energie verandern, also irgendeine Konstante Vj zu V (z) hinzuaddieren?

Im Buch wird behauptet, dass die neue Wellenfunktion ¥y, (z,t) dann durch
Upeu (2, 1) = e VO w (g 1)

—iVot/h \yird als Phasenfaktor bezeichnet.

gegeben ist. Der Vorfaktor e
(a) Zeige, dass obiges Wpeu(x,t) die mit V modifizierte Schrédinger-Gleichung

ih 0 Vneu o _h_Q 0? heu
ot 2m  0zx2

+ (V + Vo) ¥neu

erfiillt. Benutze dabei, dass ¥(x,t) der urspriinglichen Schrédinger-Gleichung geniigt.

(b) Untersuche, was mit dem Erwartungswert

00 R

Q) = / Qv dx
—00

einer GroBe () passiert, wenn statt ¥ nun ¥, zu dessen Berechnung verwendet wird.

Zur Erinnerung: Jeder Operator @ setzt sich aus dem Ortsoperator £ = x und dem Impulsoperator

D= ?a% zusammen. Das bedeutet, () enthilt garantiert keine Ableitung nach der Zeit ¢.

Gib schlieBlich eine gut begriindete Antwort auf die Frage, ob auch in der Quantenmechanik das
Nullniveau der potenziellen Energie frei gewahlt werden kann.



4. ee Zum mathematischen Verstiandnis separierbarer Ldsungen

Die folgenden Fragen repetieren den mathematischen Inhalt der Seiten 48f im QM-Buch von Griffiths.

()
(b)

Was ist mathematisch mit einer separierbaren Lésung (= aufteilbaren Losung) der Schrédinger-
Gleichung gemeint?

In der Schrddinger-Gleichung
W
ot 2m Ox2

stehen partielle Ableitungen, also % und 8%, wahrenddem es in der “Zeitgleichung”

VW (4)

und in der zeitunabhéngigen Schrodinger-Gleichung

K2 q2
—%d—;ervw:Ew (6)

gewdhnliche Ableitungen < und L sind.

Warum muss das so sein? Resp.: Was fiir eine Art von Gleichung ist die Schrodinger-Gleichung (4)
und wie nennt man im Gegensatz dazu die Gleichungen (5) und (6)?

Wie kommt es, dass bei der Variablenseparation eine Separationskonstante — bei der Schrodinger-
Gleichung jeweils mit E bezeichnet — eingefiihrt werden kann/muss?

Im Prinzip lautet der vollstindige Funktionsansatz fiir die Lésung der Zeitgleichung (5):
p(t) = A-e BN (7)

Zeige erstens, dass dieser Ansatz Gleichung (5) 16st, und begriinde zweitens, weshalb Griffiths in der
Folge einfach A = 1 setzt resp. nur noch ¢(t) = e £t/ schreibt.



5. oo Normierungserhaltung aufgrund der Schrédinger-Gleichung

Im Buch von Griffiths haben wir im Abschnitt 1.4 Normierung (S. 34) gelernt, dass die Schrédinger-
Gleichung selber dafiir sorgt, dass eine einmal normierte Losung ¥(z,t) ihre Normierung beibehilt,
wenn die Zeit t voranschreitet. Griffiths sagt dazu: “Ohne dieses entscheidende Merkmal wéiren die
Schrédinger-Gleichung und die statistische Interpretation inkompatibel, und das gesamte Theoriegebiude
wiirde zusammenbrechen”. Den Beweis dieser Eigenschaft haben wir im Unterricht nur kurz iiberflogen,
weil er mathematisch zwar interessant, aber fiir unser weiteres Verstandnis nicht so zentral ist. Hier hast du
die Moglichkeit, dich trotzdem damit auseinanderzusetzen. Dabei siehst du, wie sehr die verschiedenen
mathematischen Werkzeuge — Differentialrechnung, komplexe Zahlen und Integrationstechniken — nun
allesamt gebraucht werden. Die Aufgabe leitet dich Schritt fiir Schritt durch den Beweis.

()

Vorgabe: Die Wellenfunktion ¥ (x,t) sei eine zu irgendeinem Zeitpunkt (z.B. bei ¢ = 0) normierte
Losung der Schrodinger-Gleichung
ov n? o?w
h——=————= v
ot 2m Ox? v (8)
Wir wollen beweisen: Steuert die Schrddinger-Gleichung (8) die zeitliche Entwicklung der Wellen-
funktion ¥(x,t), so bleibt deren Normierung erhalten.

Vorgehensweise und Ziel: Die Normierungsbedingung fiir Wellenfunktionen lautet:

+o0o
/ Otz =1 9)

—00

Was sollte demnach fiir die zeitliche Ableitung

% (/:oyw(x,t)y?dx> (10)

gelten, wenn die Normierung erhalten bleibt?

Vertauschung von zeitlicher Ableitung und 6rtlichem Integral: Zu Beginn des Beweises wird
die Ableitung nach der Zeit, die eigentlich vor dem Integralzeichen steht, einfach ins Integral hin-

eingenommen:
4 /MIW( t)|*d —/+oo—a @ (,t)*d (11)
i N x, x| = b x, x

Wir wollen an einem willkiirlichen Beispiel (f(z,t) = A - ;—22) nachvollziehen, dass eine derartige
Vertauschung des ortlichen Integrals ([ ...dz) und der zeitlichen Ableitung (%) in aller Regel
problemlos funktioniert. Zeige dazu, dass die folgenden beiden Ausdriicke identisch sind, indem du
sie in der vorgegebenen Reihenfolge integrierst und ableitest:

d +00 +2 +oo 9 +2
— A-— — A=
T (/1 = dx) und /1 5 < x2> dx

Beachte bei deiner Ausfiihrung, wie sich im ersten Fall links nach der Integration ein Ausdruck F'(t)
ergibt, der nicht mehr von x abh&ngt — schliesslich hast du iiber f(z,t) dz integriert. Folglich steht
dort vornedran nun die sogenannt totale Ableitung %. Anders beim zweiten Fall rechts: Dort wird
die Funktion f(z,t) zuerst nach der Zeit ¢t abgeleitet. Dabei handelt es sich zwangsldufig um eine
partielle Ableitung %.
Ausfiihrung der Produktregel: | ¥ (xz,t)|? ist das Betragsquadrat der komplexen Zahl ¥(x,t).
Dabei gilt fiir z € C stets: |z|2 = 2*z, wobei z* fiir das Konjugiert-Komplexe von z steht. Folglich
gilt es nun also zu zeigen, dass

/+OO 9 *W)dx =0 (12)

o)

ist. (Zugunsten der Ubersichtlichkeit lasse ich nun bei ¥ und ¥* die explizite Variablendeklaration
(x,t) weg.) Das Produkt ¥* ¥ muss nach der Zeit ¢ abgeleitet werden. Fiihre diese Ableitung unter
Verwendung der Produktregel aus.



(d)

Gleichungen komplex konjugieren: Die Schrodinger-Gleichung (8) erlaubt uns, die zeitliche Ablei-

tung %—f durch einen Ausdruck mit der ortlichen Ableitung %—f zu ersetzen, was uns die Moglichkeit
geben wird, das Integral tatsdchlich zu berechnen. Allerdings miissen wir nicht nur %—f, sondern

.
auch %—Wt ersetzen.

Jede komplexe Gleichung kann sehr leicht konjugiert werden: Man versieht alle i’s mit einem
Minuszeichen und notiert anstelle der in der Gleichung enthaltenen komplexen Zahlen z
jeweils das Konjugiert-Komplexe z*.
Wir wollen uns die Richtigkeit dieses Vorgehens plausibel machen. Fiir vier komplexe Zahlen 21, 23,
z3 und z4 gelte beispielsweise:

21 = 29 +1iz3 —izy
Zeige, dass dann auch gilt:

2] = 25 —iz3 iz
Tipp: Notiere zuerst alle drei komplexen Zahlen in der Summenschreibweise z = = + yi.

Konjugierte Schrodinger-Gleichung: Verwende das Vorgehen aus (d), um die Schrédinger- Glei-
chung (8) zu konjugieren.

Einsetzen der Schrédinger-Gleichungen: Verwende nun die Schrédinger-Gleichung und ihr Kon-

jugiertes, um die zeitlichen Ableitungen %—f und % in
/+OO 0w v+ W*aw d (13)
— | dx
oo ot ot

durch Ausdriicke mit ortlichen Ableitungen zu ersetzen. Vereinfache das Resultat soweit, dass

ih [T o*vw 9ot

— V'— — —— V¥ |d 14

2m  J_o < dx?  Ox? > v (14)

dasteht. Was hat sich bei dieser Vereinfachung weggestrichen?

Noch mehr Produktregel: Uberzeuge dich durch Ausfiihrung der Ableitung a% davon, dass die
Klammer unter dem Integral in (14) durch den Ausdruck

0 L0  ovur
%(“7 9r  on “’)

ersetzt werden kann. Beachte dabei zweimal die Produktregel.

Bis anhin haben wir gefunden:

d [ [t ) ih [T 9 [ oW owr

—0 —00
Schau dir das Integral rechts genau an. Weshalb l3sst sich die Stammfunktion dazu ohne zusatzliche
Rechnung sofort angeben?

Insgesamt haben wir bis hierhin gefunden, dass

d +oo ih ov ov*
— v 2 = =— U =—— 1
dt </OO (2, 2)] dx) 2m < dr  Ox )

+oo

(16)

—00

Nun miissen verniinftige, also quadratintegrable Wellenfunktionen allerdings die Eigenschaft aufwei-
sen, dass
li 14 =
A, P =0
weil sie sonst gar nicht normiert werden kdnnten. Was folgt daraus fiir unseren Ausdruck in (16)
und weshalb schon wieder ist damit unser Beweis abgeschlossen?



6. oo Die Herleitung des Impulsoperators

In der Quantenmechanik lasst sich der Erwartungswert (@) einer beliebigen Grosse @) via

+00 R
@=[ wara (17)

—00

berechnen. Dabei ist @ der zur Grésse ) gehorende Operator.

Besonders interessant sind der Ortsoperator ¥ = x und der Impulsoperator p = ?8%,

beiden Operatoren alle weiteren Operatoren von Interesse zusammensetzen lassen.

weil sich aus diesen

Im Abschnitt 1.5 Impuls im QM-Buch von Griffiths (S. 37f) wird plausibel erlutert, wie man zu die-
sem Impulsoperator p gelangt. Diese rechnerische Uberlegung soll hier im Detail nachvollzogen werden,
weil die Mathematik in diesem Gedankengang im Buch nur grob skizziert wird, fiir uns aber eine gute

Lerngelegenheit darstellt.
(a) Griffiths beginnt bei der zeitlichen Ableitung % des ortlichen Erwartungswerts (z), die im Folgen-
den als Erwartungswert (v) fiir die Geschwindigkeit verstanden wird. Dafiir notieren wir zunichst:

% _ % </+°°x | W(:n,t)|2da:> (18)

— o0
Mache nun zuerst zwei Schritte:

i. Nimm die Ableitung nach der Zeit ins Integral hinein (vgl. Aufgabe 5.(b)).
ii. Danach kannst du den Faktor x unter dem Integral vor die zeitliche Ableitung nehmen, weil . ..

(b) Nun erfolgt dieselbe Vereinfachung, die wir in den Schritten (c) bis (f) der Aufgabe 5 genau nach-
vollzogen haben. Zusammengefasst wird dort gezeigt, dass aus der Schrodinger-Gleichung folgt:

o, o, ih O [ 00 O
a“p'—ﬂa@ afaﬂ) (19)

Dieses Resultat setzen wir nun einfach ein und erhalten das Zwischenresultat

d{z) ih [t 0 ow  ov*
= .= — - | = — 1
2m v ox ( ox ox > dz

(20)
—0o0
Dieses Integral l3sst sich aufgrund des Vorfaktors x im Integral nun nicht so direkt berechnen wie
jenes im Schritt (h) in Aufgabe 5. Allerdings konnen wir auch hier durchaus ausniitzen, dass wir

unter dem Integral bereits eine Ableitung nach dem Ort stehen haben. Das Integral in (20) hat die
Form

+oo *
/_ f(x)-d(z) da mit f(r)=z und ¢'(x)= % (W*%—f - 8;; W> (21)

Das ist die perfekte Ausgangslage fiir eine partielle Integration, die uns ermdglichen wird, den Faktor
x loszuwerden.

Repetition zur partiellen Integration: Wir betrachten die Produktregel beim Ableiten

[f(@) g(@)]" = f'(@) g(x) + f(2) g (x)

Integrieren wir iiber beide Seiten, so ergibt sich:

b b b
/ [£(x) g()] dz = / f() g(z) dz + / f(2)d (@) dz



Nun steht auf der linken Seite aber das Integral iiber der Ableitung von f(x)g(z). Eine Stamm-
funktion dazu ist f(z) g(z) selber, woraus folgt:

[f(x) g(x)]

b b b
= [ @@t [ 1) g
Durch Umstellen finden wir:

b b b
[ 1@ g @ =@ e@)| - [ £@ o) da (22

Diese Beziehung bezeichnet man als partielle Integration, weil von der Funktion h(z) = f(z) ¢'(x)
quasi nur der “Part” resp. Anteil ¢’(x) integriert, also aufgeleitet wird. Damit ist die Integration von
h(z) = f(z) g (x) noch nicht abgeschlossen, vielmehr hat man das Problem auf die Berechnung
des Integrals tiber i(xz) = f'(x) g(x) verlagert. Dieses ist aber unter Umstidnden wesentlich leichter
zu berechnen, sodass sich die partielle Integration ausbezahlt.

Verwende nun die partielle Integration, um das Zwischenresultat in 20 neu zu schreiben.

Bei der partiellen Integration entsteht ein Glied der Form

ov Qv
| — — v
[w < Oz oz )]
Aufgrund der Quadratintegrabilitdt von ¥ entsteht beim Einsetzen der Grenzen —oo und +oo jeweils

der Wert 0, denn bei einer normierbaren Wellenfunktion ¥ muss der Funktionswert fir x — +oo
schneller starker als % gegen 0 gehen. Dieses Glied verschwindet also komplett.

+oo

(23)

—00

Vereinfache mit dieser Information deinen bisher fiir (v) gefundenen Ausdruck.

Ich bearbeite das bisherige Resultat weiter, indem ich das Integral — aufgrund der fiir Integrale
giiltigen Summenregel — auf zwei Integrale verteile:

Cd{w)y  ih [T/ 00 OU*
<U>_T_”'__2m. e (W dr Oz W) de
ih teo OV teo gu

Betrachte nur das hintere der beiden Integrale und fiihre damit nochmals eine partielle Integration
durch (bei der ein Glied aus bereits bekanntem Grund wieder gleich 0 ist). Dadurch miisstest du
schliesslich herausfinden, dass gilt:

—0o0
Fiir den Erwartungswert des Impulses schreiben wir nun:
+oo
(p>:m<v>:...i/ U*p¥de (26)
—0o0
Schliesse daraus mit dem Zwischenresultat (25) auf den Impulsoperator p.

Tipp: Nimm alle Vorfaktoren wieder ins Integral hinein und verwende % —i.



