
Übungen zum physikalischen Ergänzungsfach

Serie 12: Unendlich tiefer Potentialtopf und separierbare Lösungen –

LÖSUNGEN

1. •• Zum Verständnis stationärer Zustände

(a) Die separierbaren Lösungen der Schrödinger-Gleichungen haben die Eigenschaft, dass die Erwartungs-
werte beliebiger Größen Q konstant bleiben, also stationär sind. Daher werden diese Lösungen auch
als stationäre Zustände bezeichnet.

Diese Unveränderlichkeit der Erwartungswerte können wir leicht verifizieren:

〈Q〉n =

∫ +∞

−∞
Ψ

∗
n(x, t) Q̂Ψn(x, t) dx =

∫ +∞

−∞
ψ∗
n(x) e

iEnt/~ Q̂
(
ψn(x) e

−iEnt/~
)
dx

=

∫ +∞

−∞
eiEnt/~ e−iEnt/~︸ ︷︷ ︸

=1

· ψ∗
n(x) Q̂ ψn(x) dx =

∫ +∞

−∞
ψ∗
n(x) Q̂ ψn(x) dx = konst. bzgl. t

Dabei dürfen die zeitabhängigen Exponentialterme im Integral vor die anderen Glieder gezogen werden,
weil der Operator Q̂ keine Ableitung nach der Zeit enthält.

(b) Ein Teilchen befinde sich im stationären Zustand Ψn(x, t). Was stimmt, was nicht? Weshalb?

i. Dieser stationäre Zustand entspricht einer separierbaren Lösung der Schrödinger-Gleichung und
weist eine ganz bestimmte Gesamtenergie E auf.
Stimmt! Stationär zu sein ist ja gerade das, was eine separierbare Lösung der Schrödinger-
Gleichung auszeichnet. Die zugehörige Gesamtenergie entspricht der Separationskonstante.

ii. Die Erwartungswerte aller physikalischen Größen sind zeitlich konstant.
Stimmt! Das gilt, weil sich das Teilchen in einem reinen stationären Zustand befindet. Allgemein
würden sich die verschiedenen Erwartungswerte mit der Zeit schon verändern.

iii. Messe ich den Ort x des Teilchens, so ergibt sich ein ganz bestimmter Wert xn, der durch den
aus Ψn(x, t) berechneten Erwartungswert 〈x〉 vorausgesagt wird.
Falsch! Den Ort eines Teilchens kennen wir nicht genau. Er bleibt bis zur Messung unbestimmt
und es gibt aufgrund der Heisenberg’schen Unschärferelation stets eine Streuung.

iv. Messe ich die Gesamtenergie E des Teilchens, so ergibt sich ein ganz bestimmter Wert En, der
durch den Erwartungswert 〈E〉 vorausgesagt wird.
Stimmt! Der stationäre Zustand gibt seine Gesamtenergie ganz genau vor. Die Streuung beträgt
0. Jede Messung der Gesamtenergie muss genau diesen E-Wert ergeben.

(c) Ein Teilchen befinde sich im Zustand Ψ(x, t), der eine Linearkombination mehrerer stationärer Zustän-
de sein soll. Was sagst du zur folgenden Behauptung: “Alle aus Ψ(x, t) berechneten Erwartungswerte
sind zeitlich konstant.”

Diese Behauptung ist falsch! Das ist ja genau der Punkt: Befindet sich ein Teilchen in einem reinen

stationären Zustand Ψn(x, t), so sind alle Erwartungswerte konstant. Bei einer Linearkombination
mehrerer stationärer Zustände hingegen sind die Erwartungswerte zeitabhängig.

2. • Zwei Rechnungen mit der Euler-Schreibweise für Sinus und Cosinus

(a) Wir gehen fast genau gleich vor wie im gezeigten Beispiel:

sin2 x =

(
eix − e−ix

2i

)2

=
e2ix − 2eixe−ix + e−2ix

−4
=
e2ix − 2 + e−2ix

−4

=
2

4
− 1

2

e2ix + e−2ix

2
=

1

2
− 1

2
cos(2x)
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(b) Wir wandeln in die Euler-Schreibweise um, multiplizieren geschickt aus, sortieren dann nach verschie-
denen Potenzen von e und gruppieren neu, wobei wir das Ziel im Auge behalten:

cos2 x sinx =

(
eix + e−ix

2

)2

· e
ix − e−ix

2i
=

1

8i

(
eix + e−ix

)(
eix + e−ix

)(
eix − e−ix)

=
1

8i

(
eix + e−ix

)(
e2ix − e−2ix

)
=

1

8i

(
e3ix − e−ix + eix − e−3ix

)

=
1

4

(
e3ix − e−3ix

2i
+
eix − e−ix

2i

)
=

1

4

(
sin(3x) + sinx

)

N.B.: Von der ersten zur zweiten Zeile haben wir die dritte binomische Formel verwendet.

Grafisch sieht cos2 x sinx folgendermassen aus:

3. •• Orthonormalität der ψn(x) im unendlich tiefen Potentialtopf

(a) Betrachten wir das Betragsquadrat der in den ψn(x) enthaltenen Sinusfunktionen:

sin(knx) ⇒ | sin(knx)|2 = sin2(knx) mit kn =
nπ

a
und n ∈ N

und führen uns dieses für die ersten paar n explizit vor Augen:

Es handelt sich immer um dieselbe Sinusfunktion, die allerdings bei grösserem n horizontal immer
mehr gestaucht ist. So ist die Fläche unter einem “Zacken” bei n = 4 beispielsweise nur noch ein
Viertel der Fläche unter dem Bauch bei n = 1. Dafür gibt es nun allerdings vier solche Zacken im
Gegensatz zu dem einen Bauch, sodass die Fläche unter der Kurve insgesamt gleich bleibt. Folglich
muss für alle n mit demselben Faktor normiert – also vertikal gestreckt – werden, damit die Fläche
unter dem Graphen gleich 1 wird.
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(b) Bevor wir die ganze Rechnung angehen, überzeugen wir uns von der Richtigkeit der in der Aufgaben-
stellung unter i. vorgestellten trigonometrischen Identität. Dazu verwenden wir die Euler-Schreibweisen
für Sinus und Cosinus:

2 sin
(mπ
a
x
)
sin
(nπ
a
x
)
= 2 · e

imπx/a − e−imπx/a

2i
· e

inπx/a − e−inπx/a

2i

= 2 · e
i(m+n)πx/a − ei(m−n)πx/a − ei(−m+n)πx/a + ei(−m−n)πx/a

−4

=
−ei(m+n)πx/a + ei(m−n)πx/a + e−i(m−n)πx/a − e−i(m+n)πx/a

2

=
ei(m−n)πx/a + e−i(m−n)πx/a

2
− ei(m+n)πx/a + e−i(m+n)πx/a

2

= cos

(
m− n

a
πx

)
− cos

(
m+ n

a
πx

)
q.e.d.

Nun können wir den Orthonormalitätsbeweis angehen:
∫ +∞

−∞
ψ∗
m(x)ψn(x) dx =

∫ a

0
ψ∗
m(x)ψn(x) dx

=

∫ a

0

√
2

a
sin
(mπ
a
x
) √2

a
sin
(nπ
a
x
)
dx

=
2

a
·
∫ a

0
sin
(mπ
a
x
)
sin
(nπ
a
x
)
dx

=
1

a
·
∫ a

0

[
cos

(
m− n

a
πx

)
− cos

(
m+ n

a
πx

)]
dx

=
1

a
·
[ ∫ a

0
cos

(
m− n

a
πx

)
dx−

∫ a

0
cos

(
m+ n

a
πx

)
dx

]

Mit k = (m±n)π
a können wir die unter ii. beschriebene “umgekehrte Kettenregel” direkt auf die beiden

Integrale anwenden:
∫ a

0
cos

(
m± n

a
πx

)
dx =

∫ a

0
cos(kx) dx =

1

k
·
[
sin(kx)

]∣∣∣
a

0

∗
=

a

(m± n)π

(
sin

(
(m± n)π

a
· a
)
− sin

(
(m± n)π

a
· 0
))

=
a

(m± n)π

(
sin
(
(m± n)π

)
− sin(0)

)

=
a

(m± n)π
· sin

(
(m± n)π

)

Somit erhalten wir für die Fortsetzung obiger Rechnung:
∫ +∞

−∞
ψ∗
m(x)ψn(x) dx = . . . =

1

a
·
[ ∫ a

0
cos

(
m− n

a
πx

)
dx−

∫ a

0
cos

(
m+ n

a
πx

)
dx

]

=
1

a
·
[

a

(m− n)π
· sin

(
(m− n)π

)
− a

(m+ n)π
· sin

(
(m+ n)π

)]

=
sin
(
(m− n)π

)

(m− n)π
− sin

(
(m+ n)π

)

(m+ n)π

Für m,n ∈ N und m 6= n sind m− n und m+ n von 0 verschiedene ganze Zahlen. Dann gilt:

sin
(
(m− n)π

)
= 0 und sin

(
(m+ n)π

)
= 0 denn: sin(kπ) = 0 für alle k ∈ Z
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Folglich ergibt sich für m 6= n:
∫ +∞

−∞
ψ∗
m(x)ψn(x) dx =

sin
(
(m− n)π

)

(m− n)π
− sin

(
(m+ n)π

)

(m+ n)π
= 0− 0 = 0

Problematisch wird es für m = n beim Schritt ∗ in der Rechnung weiter oben. Dann entsteht nämlich
beim ersten Integral der Vorfaktor a

(m−n)π , dessen Nenner im Fall m = n gleich 0 wäre.

Im Fall m = n müssten wir demnach separat anschauen, was bei der Rechnung herauskommt. Das ist
aber gar nicht mehr nötig, denn wir wissen von der Normierung her bereits, dass

∫ +∞

−∞
ψ∗
n(x)ψn(x) dx =

∫ +∞

−∞
|ψn(x)|2 dx = 1

ist. Nun können wir das Resultat übersichtlich zusammenfassen:
∫ +∞

−∞
ψ∗
m(x)ψn(x) dx = δmn =

{
0 für m 6= n

1 für m = n

Dabei ist δmn das sogenannte Kronecker-Symbol, das für m = n den Wert 1 hat und für m 6= n

gleich 0 ist. Damit haben wir nun die Orthonormalität der Ortsanteile der separierbaren Lösungen im
unendlich tiefen Potentialtopf überprüft.

4. ◦ Allgemeines zu Linearkombinationen separierbarer Lösungen

(a) Wir können die Linearkombination in die linke Seite der Schrödinger-Gleichung einsetzen und dann
zeigen, dass aufgrund der Tatsache, dass Ψ1(x, t) und Ψ2(x, t) die Schrödinger-Gleichung erfüllen,
nun auch für Ψ(x, t) die rechte Seite der Schrödinger-Gleichung entsteht. Dabei benutzen wir die
Ableitungsregel für Funktionssummen ([f + g]′ = f ′ + g′):

i~
∂Ψ

∂t
= i~

∂(

=Ψ︷ ︸︸ ︷
c1Ψ1 + c2Ψ2 )

∂t
= c1i~

∂Ψ1

∂t
+ c2i~

∂Ψ2

∂t

= c1

(
− ~

2

2m

∂2Ψ1

∂x2
+ VΨ1

)
+ c2

(
− ~

2

2m

∂2Ψ2

∂x2
+ V Ψ2

)

= −c1
~
2

2m

∂2Ψ1

∂x2
− c2

~
2

2m

∂2Ψ2

∂x2
+ c1VΨ1 + c2V Ψ2

= − ~
2

2m

∂2(

=Ψ︷ ︸︸ ︷
c1Ψ1 + c2Ψ2 )

∂x2
+ V (

=Ψ︷ ︸︸ ︷
c1Ψ1 + c2Ψ2 ) = − ~

2

2m

∂2Ψ

∂2x
+ VΨ q.e.d.

(b) Das Ortsintegral über das Betragsquadrat der Wellenfunktion Ψ(x, t) muss 1 ergeben. Dank der
Orthonormalität der Ψn(x, t) kann dieses Integral gut vereinfacht werden:

∫ +∞

−∞
|Ψ(x, t)|2 dx =

∫ +∞

−∞
Ψ

∗(x, t)Ψ(x, t) dx =

∫ +∞

−∞

(
∑

m∈N
c∗mΨ

∗
m

)(
∑

n∈N
cnΨn

)
dx

=

∫ +∞

−∞

(
c∗1Ψ

∗
1 + c∗2Ψ

∗
2 + . . .

)(
c1Ψ1 + c2Ψ2 + . . .

)
dx

=

∫ +∞

−∞

(
c∗1c1Ψ

∗
1Ψ1 + c∗2c2Ψ

∗
2Ψ2 + . . .

)
dx =

∫ +∞

−∞

(∑

n∈N
c∗ncnΨ

∗
nΨn

)
dx

An dieser Stelle bemerken wir, dass das Integral über jeden einzelnen der unendlich vielen Terme der
Form c∗mcnΨ

∗
mΨn mit m 6= n wegen der Orthonormalität der Ψn(x, t) den Wert 0 hat. (Die c∗m und cn

sind dabei nur multiplikative Konstanten.) Nur die Glieder mit m = n bleiben stehen. Genau deshalb
vereinfacht sich das Integral von der zweiten zur dritten Zeile oben so drastisch.
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Nun setzen wir fort, indem wir die Summe vor das Integral ziehen (Summenregel für Integrale). auch
die c∗ncn können als multiplikative Konstanten vor das Integral genommen werden:

∫ +∞

−∞
|Ψ(x, t)|2 dx =

∑

n∈N

(
c∗ncn ·

∫ +∞

−∞
Ψ

∗
nΨn dx

︸ ︷︷ ︸
=1

)
=
∑

n∈N
c∗ncn =

∑

n∈N
|cn|2 !

= 1

Somit haben wir eine Bedingung für die (komplexen) Koeffizienten cn erhalten:

|c1|2 + |c2|2 + |c3|2 + . . .
!
= 1

(c) Wie wir nun erfahren haben, muss gelten:

|c1|2 + |c2|2 = 1

Da c1 und c2 positiv und reell sein sollen, können wir die Betragsstriche weglassen. Wir setzen c =
c1 = c2, denn Ψ1(x, t) und Ψ2(x, t) sollen gleich stark in der Linearkombination vertreten sein. Es
folgt:

c2 + c2 = 2c2 = 1 ⇒ c2 =
1

2
⇒ c = c1 = c2 =

1√
2
=

√
2

2

5. •• Erst die Linearkombination bewegt das Teilchen!

(a) Wir berechnen Schritt für Schritt (c1, c2, ψ1(x), ψ2(x) ∈ R):

|Ψ(x, t)|2 = Ψ
∗(x, t)Ψ(x, t) =

(
c1ψ1e

iE1t/~ + c2ψ2e
iE2t/~

)(
c1ψ1e

−iE1t/~ + c2ψ2e
−iE2t/~

)

= c21ψ
2
1 e

iE1t/~ e−iE1t/~ + c22ψ
2
2 e

iE2t/~ e−iE2t/~

+ c1c2ψ1ψ2 e
iE1t/~ e−iE2t/~ + c1c2ψ1ψ2 e

iE2t/~ e−iE1t/~

= c21ψ
2
1 + c22ψ

2
2 + c1c2ψ1ψ2

(
ei(E1−E2)t/~ + ei(E2−E1)t/~

)

= c21ψ
2
1 + c22ψ

2
2 + c1c2ψ1ψ2

(
e−i(E2−E1)t/~ + ei(E2−E1)t/~

)

= c21ψ
2
1 + c22ψ

2
2 + 2c1c2ψ1ψ2 cos

(
E2 − E1

~
t

)

Neben den konstanten Gliedern c21ψ
2
1 und c22ψ

2
2 gibt es in der Wahrscheinlichkeitsdichte |Ψ(x, t)|2

auch einen Anteil 2c1c2ψ1ψ2 cos(E2−E1

~
t), der in Abhängigkeit von der Zeit t sinusförmig hin und her

schwingt. Dabei beträgt die Kreisfrequenz E2−E1

~
.

(b) Wir wollen unser Resultat aus (a) verwenden. Mit den Angaben zum Grundzustand und zum ersten
angeregten Zustand des unendlich tiefen Potentialtopfs bemerken wir zuerst:

ψ1(x) =

√
2

a
· sin

(π
a
· x
)

und ψ2(x) =

√
2

a
· sin

(
2π

a
· x
)

Sind Ψ1 und Ψ2 gleich stark in Ψ vertreten, so ist c1 = c2 = 1√
2
und wir können direkt das Resultat

aus (a) verwenden, um den Gesamtzustand einigermassen übersichtlich zusammengefasst zu notieren:

|Ψ(x, t)|2 = c21ψ
2
1 + c22ψ

2
2 + 2c1c2ψ1ψ2 cos

(
E2 − E1

~
· t
)

=
1

2
· 2
a
sin2

(π
a
x
)
+

1

2
· 2
a
sin2

(
2π

a
x

)
+ 2 · 1

2
· 2
a
sin
(π
a
x
)
sin

(
2π

a
x

)
cos

(
E2 − E1

~
t

)

=
1

a

(
sin2(kx) + sin2(2kx) + 2 sin(kx) sin(2kx) cos(ωt)

)
mit k =

π

a
, ω =

E2 − E1

~

Das sieht in dieser ausgeschriebenen Form recht kompliziert aus, auch wenn wir es mit einer relativ
einfachen Linearkombination zu tun haben.
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(c) Für die Eingabe in GeoGebra folgt man am besten den Hinweisen im Aufgabentext, denn es sind ja
alle drei Wahrscheinlichkeitsdichten |Ψ1(x, t)|2, |Ψ2(x, t)|2 und |Ψ(x, t)|2 einzutragen. D.h., wir setzen
m = ω = ~ = 1 und definieren A =

√
2
a , um dann relativ simpel ψ1 und ψ2 einzugeben. Danach sind

die Eingaben von ψ2
1 , ψ

2
2 nicht mehr schwierig und mit c = c1 = c2 = 1√

2
resp. c2 = c21 = c22 = 1

2

folgt weiter:

|Ψ(x, t)|2 = c21ψ
2
1 + c22ψ

2
2 + c1c2ψ1ψ2 cos(t) =

1

2

(
ψ2
1 + ψ2

2 + 2ψ1ψ2 cos(ωt)
)

=
1

2

(
ψ2
1 + ψ2

2

)
+ ψ1ψ2 cos(ωt)

)

Dabei können wir der Einfachheit halber ω = 1 setzen, also auch weglassen, weil es hier eigentlich nur
um eine Wahl der Zeiteinheit geht, die unserem Fall einfach so gewählt sein muss, dass wir bei der
Bewegung des Schiebereglers für t die Veränderung von |Ψ(x, t)|2 gut nachverfolgen können.

Im Folgenden sehen wir die grafischen Resultate. Zunächst sind ψ1(x), ψ2(x) und ψ1(x)ψ2(x) in-
teressant. Diese Funktionen dürfen auch negative Werte annehmen, weil es sich ja noch nicht um
Wahrscheinlichkeitsdichten handelt. ψ1(x) ist bezüglich der Mitte unseres Potentialtopfs (x = a

2 )
gerade (= achsensymmetrisch), während ψ2 ungerade (= punktsymmetrisch) ist. Folglich ist auch
ψ1(x)ψ2(x) ungerade, denn das Produkt aus einer geraden und einer ungeraden Funktion ist selber
wieder ungerade.

ψ2
1 ist sicher auch gerade, wenn bereits ψ1 gerade ist. Durch das Quadrieren wird nun aber auch ψ2

2

gerade. Das bedeutet zudem, dass nun auch ψ2
1 + ψ2

2 positiv und gerade ist:

ψ2
1 und ψ2

2 sind sowohl gerade, als auch unabhängig von der Zeit. Der Anteil 1
2 (ψ

2
1 + ψ2

2) ist somit
nicht in der Lage die Wahrscheinlichkeitsdichte |Ψ(x, t)|2 zu bewegen! Das schafft erst die Addition
von ψ1ψ2 cos(ωt). Einerseits hängt nur dieses Glied von der Zeit t ab, andererseits ist die Amplitude
vor der Cosinusfunktion, also ψ1ψ2, nun eben ungerade und somit erzeugt dieses Glied ein Hin- und
Hergehen des Betragsquadrates |Ψ(x, t)|2 der gesamten Wellenfunktion Ψ(x, t).
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Wir bemerken ganz bewusst: In |Ψ(x, t)|2 wird genau das Glied ψ1ψ2 cos(ωt) nicht quadriert! Es kann
somit negative Werte aufweisen, sodass der durch |ψ2|2 = ψ2

2 an einer bestimmten Stelle x vorgege-
bene “Ausgangswert” dadurch vergrössert, aber auch verkleinert werden kann. Interessant dabei ist,
dass ψ1ψ2 cos(ωt) zu jedem beliebigen Zeitpunkt t gerade so beschaffen ist, dass die Gesamtwahr-
scheinlichkeit dadurch nicht verändert wird, also gleich 1 bleibt. Das ist bei näherem Hinsehen aber
gar nicht so verwunderlich, denn schliesslich gilt

∫ a

0
ψ1ψ2 cos(ωt) dx = cos(ωt) ·

∫ a

0
ψ1ψ2 dx

︸ ︷︷ ︸
=0

= 0 ,

wie wir der ersten Grafik oben direkt ansehen.

Hier nun noch ein paar Ansichten der gesamten Wahrscheinlichkeitsdichte |Ψ(x, t)|2 zu verschiedenen
Zeitpunkten innerhalb einer Periode:

Lassen wir die Zeit laufen, so sehen wir die Verschiebung der Wahrscheinlichkeitsdichte |Ψ(x, t)|2.
In unserem Zustand Ψ(x, t), der eine Linearkombination der beiden Zustände niedrigster Energie ist,
“schwingt” unser Teilchen – resp. genauer: seine Wahrscheinlichkeitsdichte – im Topf hin und her.
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