Ubungen zum physikalischen Erginzungsfach
Serie 12: Unendlich tiefer Potentialtopf und separierbare Lésungen —
LOSUNGEN

1. ee Zum Verstdndnis stationdrer Zustande

(a) Die separierbaren Lésungen der Schrodinger-Gleichungen haben die Eigenschaft, dass die Erwartungs-
werte beliebiger GroBen @ konstant bleiben, also stationdr sind. Daher werden diese Lésungen auch
als stationdre Zustdnde bezeichnet.

Diese Unverdnderlichkeit der Erwartungswerte kdnnen wir leicht verifizieren:
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Dabei diirfen die zeitabhangigen Exponentialterme im Integral vor die anderen Glieder gezogen werden,
weil der Operator () keine Ableitung nach der Zeit enthilt.

(b) Ein Teilchen befinde sich im stationdren Zustand ¥, (x,t). Was stimmt, was nicht? Weshalb?

i. Dieser stationdre Zustand entspricht einer separierbaren Lésung der Schrédinger-Gleichung und
weist eine ganz bestimmte Gesamtenergie F auf.
Stimmt! Stationdr zu sein ist ja gerade das, was eine separierbare Ldsung der Schrédinger-
Gleichung auszeichnet. Die zugehorige Gesamtenergie entspricht der Separationskonstante.

ii. Die Erwartungswerte aller physikalischen GroBen sind zeitlich konstant.
Stimmt! Das gilt, weil sich das Teilchen in einem reinen stationdren Zustand befindet. Allgemein
wiirden sich die verschiedenen Erwartungswerte mit der Zeit schon verandern.

iii. Messe ich den Ort x des Teilchens, so ergibt sich ein ganz bestimmter Wert x,,, der durch den
aus ¥, (x,t) berechneten Erwartungswert (x) vorausgesagt wird.
Falsch! Den Ort eines Teilchens kennen wir nicht genau. Er bleibt bis zur Messung unbestimmt
und es gibt aufgrund der Heisenberg'schen Unschirferelation stets eine Streuung.

iv. Messe ich die Gesamtenergie E des Teilchens, so ergibt sich ein ganz bestimmter Wert FE,,, der
durch den Erwartungswert (E) vorausgesagt wird.
Stimmt! Der stationdre Zustand gibt seine Gesamtenergie ganz genau vor. Die Streuung betragt
0. Jede Messung der Gesamtenergie muss genau diesen F-Wert ergeben.

(c) Ein Teilchen befinde sich im Zustand ¥(z,t), der eine Linearkombination mehrerer stationdrer Zustén-
de sein soll. Was sagst du zur folgenden Behauptung: “Alle aus ¥ (x,t) berechneten Erwartungswerte
sind zeitlich konstant.”

Diese Behauptung ist falsch! Das ist ja genau der Punkt: Befindet sich ein Teilchen in einem reinen
stationdren Zustand ¥, (z,t), so sind alle Erwartungswerte konstant. Bei einer Linearkombination
mehrerer stationdrer Zustande hingegen sind die Erwartungswerte zeitabhangig.

2. e Zwei Rechnungen mit der Euler-Schreibweise fiir Sinus und Cosinus

(a) Wir gehen fast genau gleich vor wie im gezeigten Beispiel:
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(b) Wir wandeln in die Euler-Schreibweise um, multiplizieren geschickt aus, sortieren dann nach verschie-
denen Potenzen von e und gruppieren neu, wobei wir das Ziel im Auge behalten:
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N.B.: Von der ersten zur zweiten Zeile haben wir die dritte binomische Formel verwendet.

Grafisch sieht cos? z sin = folgendermassen aus:
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3. ee Orthonormalitit der 1, (x) im unendlich tiefen Potentialtopf

(a) Betrachten wir das Betragsquadrat der in den v, (z) enthaltenen Sinusfunktionen:
sin(kpz) = |sin(k,z)|* = sin®(k,x) mit  k, = " und neN
a

und fiihren uns dieses fiir die ersten paar n explizit vor Augen:
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Es handelt sich immer um dieselbe Sinusfunktion, die allerdings bei gréosserem n horizontal immer
mehr gestaucht ist. So ist die Flache unter einem “Zacken” bei n = 4 beispielsweise nur noch ein
Viertel der Flache unter dem Bauch bei n = 1. Dafiir gibt es nun allerdings vier solche Zacken im
Gegensatz zu dem einen Bauch, sodass die Flache unter der Kurve insgesamt gleich bleibt. Folglich
muss fiir alle n mit demselben Faktor normiert — also vertikal gestreckt — werden, damit die Flache
unter dem Graphen gleich 1 wird.



(b) Bevor wir die ganze Rechnung angehen, iiberzeugen wir uns von der Richtigkeit der in der Aufgaben-
stellung unter i. vorgestellten trigonometrischen ldentitdt. Dazu verwenden wir die Euler-Schreibweisen
fiir Sinus und Cosinus:
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Nun kdnnen wir den Orthonormalitdtsbeweis angehen:
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Mit k = @ kdnnen wir die unter ii. beschriebene “umgekehrte Kettenregel” direkt auf die beiden
Integrale anwenden:
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Somit erhalten wir fiir die Fortsetzung obiger Rechnung:
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Fiir m,n € N und m # n sind m —n und m + n von 0 verschiedene ganze Zahlen. Dann gilt:

sin((m—n)r) =0 und sin((m+n)r) =0 denn: sin(kr)=0 firallekecZ



Folglich ergibt sich fiir m # n:
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Problematisch wird es fiir m = n beim Schritt * in der Rechnung weiter oben. Dann entsteht namlich
beim ersten Integral der Vorfaktor m dessen Nenner im Fall m = n gleich 0 ware.

Im Fall m = n miissten wir demnach separat anschauen, was bei der Rechnung herauskommt. Das ist
aber gar nicht mehr nétig, denn wir wissen von der Normierung her bereits, dass
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ist. Nun konnen wir das Resultat tbersichtlich zusammenfassen:
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Dabei ist d,,, das sogenannte Kronecker-Symbol, das fiir m = n den Wert 1 hat und fiir m # n
gleich 0 ist. Damit haben wir nun die Orthonormalitdt der Ortsanteile der separierbaren Losungen im
unendlich tiefen Potentialtopf iiberpriift.

4. o Allgemeines zu Linearkombinationen separierbarer Losungen

(a) Wir konnen die Linearkombination in die linke Seite der Schrédinger-Gleichung einsetzen und dann
zeigen, dass aufgrund der Tatsache, dass ¥ (z,t) und Ws(x,t) die Schrodinger-Gleichung erfiillen,
nun auch fiir ¥(z,t) die rechte Seite der Schrodinger-Gleichung entsteht. Dabei benutzen wir die
Ableitungsregel fiir Funktionssummen ([f +g|' = f' + ¢'):
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(b) Das Ortsintegral iiber das Betragsquadrat der Wellenfunktion ¥(x,t) muss 1 ergeben. Dank der
Orthonormalitét der ¥, (z,t) kann dieses Integral gut vereinfacht werden:
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An dieser Stelle bemerken wir, dass das Integral iiber jeden einzelnen der unendlich vielen Terme der
Form ¢, ¢, U5, ¥,, mit m # n wegen der Orthonormalitdt der W, (z,t) den Wert 0 hat. (Die ¢, und ¢,
sind dabei nur multiplikative Konstanten.) Nur die Glieder mit m = n bleiben stehen. Genau deshalb
vereinfacht sich das Integral von der zweiten zur dritten Zeile oben so drastisch.



(c)

Nun setzen wir fort, indem wir die Summe vor das Integral ziehen (Summenregel fiir Integrale). auch
die ¢} ¢, konnen als multiplikative Konstanten vor das Integral genommen werden:
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Somit haben wir eine Bedingung fiir die (komplexen) Koeffizienten ¢,, erhalten:
e1]? + [eal® + [es? + ... = 1
Wie wir nun erfahren haben, muss gelten:
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Da ¢; und co positiv und reell sein sollen, kdnnen wir die Betragsstriche weglassen. Wir setzen ¢ =
¢1 = co, denn Wy(x,t) und Ws(x,t) sollen gleich stark in der Linearkombination vertreten sein. Es

folgt:

5. ee Erst die Linearkombination bewegt das Teilchen!
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Neben den konstanten Gliedern c29)f und c31)3 gibt es in der Wahrscheinlichkeitsdichte | ¥ (x,t)|?
auch einen Anteil 2¢qcot11)9 cos(% t), der in Abhangigkeit von der Zeit ¢ sinusformig hin und her

schwingt. Dabei betrdgt die Kreisfrequenz M
Wir wollen unser Resultat aus (a) verwenden. Mit den Angaben zum Grundzustand und zum ersten
angeregten Zustand des unendlich tiefen Potentialtopfs bemerken wir zuerst:

¢1($):\/g-sin<%-x) und wg(:v):\/g-sin<2§-x>

Sind ¥y und Y5 gleich stark in ¥ vertreten, so ist ¢; = ¢y = % und wir kdnnen direkt das Resultat
aus (a) verwenden, um den Gesamtzustand einigermassen iibersichtlich zusammengefasst zu notieren:
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Das sieht in dieser ausgeschriebenen Form recht kompliziert aus, auch wenn wir es mit einer relativ
einfachen Linearkombination zu tun haben.
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(c) Fiir die Eingabe in GeoGebra folgt man am besten den Hinweisen im Aufgabentext, denn es sind ja
alle drei Wahrscheinlichkeitsdichten | & (x,t)|?, |Wa(x,t)|? und | ¥ (x,t)|? einzutragen. D.h., wir setzen

m =w = h =1 und definieren A = \/g um dann relativ simpel ¢; und 9 einzugeben. Danach sind

die Eingaben von 92, 13 nicht mehr schwierig und mit ¢ = ¢; = cp = % resp. 2 = ¢} = 2 = %

folgt weiter:

| W (2,t)|* = ] + 33 + creathiibg cos(t) = = (V] + 13 + 21b cos(wt))
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= %(w% +93) + 1ahe cos(wt))

Dabei konnen wir der Einfachheit halber w = 1 setzen, also auch weglassen, weil es hier eigentlich nur
um eine Wahl der Zeiteinheit geht, die unserem Fall einfach so gewdhlt sein muss, dass wir bei der
Bewegung des Schiebereglers fiir ¢ die Veranderung von | ¥ (z,t)|? gut nachverfolgen konnen.

Im Folgenden sehen wir die grafischen Resultate. Zundchst sind 1 (x), ¥2(z) und ¥ (z)e(z) in-
teressant. Diese Funktionen diirfen auch negative Werte annehmen, weil es sich ja noch nicht um
Wahrscheinlichkeitsdichten handelt. 1y (x) ist beziiglich der Mitte unseres Potentialtopfs (z = §)
gerade (= achsensymmetrisch), wihrend 1o ungerade (= punktsymmetrisch) ist. Folglich ist auch
P1(x)a(x) ungerade, denn das Produkt aus einer geraden und einer ungeraden Funktion ist selber

wieder ungerade.
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1? ist sicher auch gerade, wenn bereits 1/, gerade ist. Durch das Quadrieren wird nun aber auch 2
gerade. Das bedeutet zudem, dass nun auch % + 13 positiv und gerade ist:
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¥? und % sind sowohl gerade, als auch unabhingig von der Zeit. Der Anteil (1 + ¢3) ist somit
nicht in der Lage die Wahrscheinlichkeitsdichte | ¥(x,t)|? zu bewegen! Das schafft erst die Addition
von 111y cos(wt). Einerseits hiangt nur dieses Glied von der Zeit ¢ ab, andererseits ist die Amplitude
vor der Cosinusfunktion, also 112, nun eben ungerade und somit erzeugt dieses Glied ein Hin- und
Hergehen des Betragsquadrates | W (z,t)|> der gesamten Wellenfunktion ¥(z,t).



Wir bemerken ganz bewusst: In | ¥(x,t)|? wird genau das Glied 1195 cos(wt) nicht quadriert! Es kann
somit negative Werte aufweisen, sodass der durch |¢2|?> = 13 an einer bestimmten Stelle = vorgege-
bene “Ausgangswert” dadurch vergrossert, aber auch verkleinert werden kann. Interessant dabei ist,
dass Y115 cos(wt) zu jedem beliebigen Zeitpunkt ¢ gerade so beschaffen ist, dass die Gesamtwahr-
scheinlichkeit dadurch nicht verandert wird, also gleich 1 bleibt. Das ist bei ndherem Hinsehen aber

gar nicht so verwunderlich, denn schliesslich gilt
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wie wir der ersten Grafik oben direkt ansehen.

Hier nun noch ein paar Ansichten der gesamten Wahrscheinlichkeitsdichte | ¥ (x,t)|? zu verschiedenen
Zeitpunkten innerhalb einer Periode:
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Lassen wir die Zeit laufen, so sehen wir die Verschiebung der Wahrscheinlichkeitsdichte |¥(z,t)|?.
In unserem Zustand ¥ (z,t), der eine Linearkombination der beiden Zustdnde niedrigster Energie ist,

“schwingt” unser Teilchen — resp. genauer: seine Wahrscheinlichkeitsdichte — im Topf hin und her.



