Ubungen zum physikalischen Ergianzungsfach
Serie 12: Unendlich tiefer Potentialtopf und separierbare Lésungen

e Basic — Dinge, die du einfach gesehen und bearbeitet haben musst — obligatorisch!
ee Die Essenz — zentrale Aufgabe fiir das grundlegende Verstindnis — obligatorisch!
o Noch ein Beispiel — Zusatzaufgabe mit weiterer Anwendung zur Vertiefung — fakultativ!
oo Du willst es? Du kriegst es! — langere, weiterfiihrende Aufgabe mit neuen Inhalten — fakultativ!

1. ee Zum Verstdndnis stationdrer Zustande

Im Abschnitt 2.1 im QM-Buch von Griffiths und in der Lektion haben wir erfahren: Die stationdren
Zustande sind genau die separierbaren Lésungen W, (x,t) der Schrédinger-Gleichung (S.-Gl.). Dazu ein
paar Kontrollfragen. ..

(a) Weshalb werden die separierbaren Losungen der S.-Gl. als stationdre Zustdnde (= "unbewegliche”
oder “unverianderliche” Zustinde) bezeichnet, obwohl die Wellenfunktion @, (z,t) = v, () e 1Ent/h
offensichtlich von der Zeit ¢ abhangig ist und sich somit verandert?

(b) Ein Teilchen befinde sich im stationdren Zustand ¥, (x,t). Was stimmt, was nicht? Weshalb?

i. Dieser stationdre Zustand entspricht einer separierbaren Lésung der S.-Gl. und weist eine ganz
bestimmte Gesamtenergie F,, auf.
ii. Die Erwartungswerte aller physikalischen GroBen sind zeitlich konstant.
iii. Messe ich den Ort = des Teilchens, so ergibt sich ein ganz bestimmter Wert z,,, der durch den
aus ¥, (z,t) berechneten Erwartungswert () vorausgesagt wird.
iv. Messe ich die Gesamtenergie E des Teilchens, so ergibt sich ein ganz bestimmter Wert E,,, der
durch den Erwartungswert (F) vorausgesagt wird.

(c) Ein Teilchen befinde sich im Zustand ¥(x,t), der eine Linearkombination mehrerer stationarer
Zustande sein soll. Was sagst du zur folgenden Behauptung: “Alle aus ¥(x,t) berechneten Erwar-
tungswerte sind zeitlich konstant.”

2. e Zwei Rechnungen mit der Euler-Schreibweise fiir Sinus und Cosinus

(a) Im Skript zu den Komplexen Zahlen wird auf Seite 37 aus den Additionstheoremen hergeleitet,
dass sich die Funktion cos? z durch eine doppelt so schnelle Cosinusfunktion mit halber Amplitude

ersetzen lasst:

cos’ x = ! + ! cos(2x)

2 2
Nachdem wir nun aber die Euler-Schreibweise fiir die Cosinusfunktion kennengelernt haben, ist die
im Skript gezeigte Herleitung unter Verwendung von Additionstheoremen resp. Doppelwinkelformeln

eigentlich eher ein Umweg. Direkter geht's wie folgt:
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Zeige in gleicher Weise, dass sin® x = % — %cos(Zm) ist.
(b) Lasse dir den Graphen von f(z) = cos? z -sinx in GeoGebra aufzeichnen und beweise anschlieBend
unter Verwendung der Euler-Schreibweise von Sinus und Cosinus die folgende Identitat:
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COS™ I SInx = 1 (sm( .CC) + S1n .I)

Von der Richtigkeit dieser Identitdt kannst du dich natiirlich direkt in GeoGebra iiberzeugen.



3. ee Orthonormalitét der 1, (x) im unendlich tiefen Potenzialtopf

Im Buch zeigt Griffiths auf Seite 55, dass die Ortsanteile der separierbaren Lésungen ¥, (x,t) im unendlich
tiefen Potentialtopf der Breite a gegeben sind durch

2
U (z) = \/; - sin(k,x) mit k, = nT: und neN . (1)

(a) Weshalb ist der Normierungsfaktor \/g gar nicht mehr vom Index n abhingig?

Denke nur grafisch iiber diese Frage nach! Wie sehen denn die Graphen von [, (x)|? aus?

Tipp: Lasse dir |, (z)]? in Abhingigkeit eine Schiebereglers n in GeoGebra aufzeichnen.
(b) Der Beweis der Orthonormalitat der 1, (x) oben auf Seite 57 geht ein bisschen gar schnell. ..
Das anfangliche Integral

= Uy () Yy (x) do mit m,n €N (2)

sollte fiir m = n den Wert 1 ergeben und ansonsten gleich 0 sein. Genau wenn dies der Fall ist,
sagen wir, die 1, (z) sind orthogonal und normiert — oder eben in einem Wort: orthonormiert.

Gehe nun Schritt fiir Schritt durch diesen Orthonormalitatsbeweis hindurch. Dabei triffst du auf die
folgenden Teilaufgaben:

i. Besonders anspruchsvoll ist der Schritt von der ersten zur zweiten Zeile. Offenbar gilt:

. (mm . (nT m-—n m+n
2sin (— x) sin <— x) = cos < mv> — cos < 7Tx> (3)
a a a

Dies kannst du mittels der Euler-Schreibweisen fiir die Sinus- und die Cosinusfunktion zeigen.
Am besten fiihrst du diesen Schritt vor der ganzen Integralberechnung separat durch.

ii. Den Schritt von der zweiten zur dritten Zeile, also die Ermittlung der Stammfunktion, kannst
du mittels einer linearen Substitution durchgefiihren, wenn du bereits iiber diese Integraltechnik

verfiigst. Ansonsten kann man auch an eine “umgekehrte Kettenregel” denken:

a

/0 cos(kzx)dx = % - [sin(kz)]

0

Der Faktor % hebt die innere Ableitung bei der Differentiation von sin(kx) aus, sodass dabei
nur cos(kz) entsteht.

iii. Weshalb ergibt sich auf der letzten Zeile der Wert 0, wenn m # n ist?
Tipp: Denke zur Beantwortung iiber die Nullstellen der Sinusfunktion nach!

iv. Unterhalb des Beweises sagt Griffiths, dass der Beweis fiir m = n nicht funktioniert. Bei welchem
Schritt scheitert er genau und weshalb?

v. Fiir m = n miisste eigentlich die gesamte Rechnung nochmals separat durchgefiihrt werden.
Weshalb verzichtet Griffiths darauf resp. weshalb weil3 er bereits, dass dies sicher der Fall ist?



4. o Allgemeines zu Linearkombinationen separierbarer Losungen

Auf Seite 51 im Griffiths lesen wir: “Nun hat aber, wie Sie leicht selbst iiberpriifen kénnen, die (zeitabhingi-
ge) Schrédinger-Gleichung die Eigenschaft, dass eine beliebige Linearkombination von Lésungen selbst
auch eine Lésung ist.”

(a) Dann iiberpriifen wir das doch rasch! Gegeben sei eine Wellenfunktion
U(x,t) =c1¥i(x,t) + coUa(x,t) mit c¢1,c2 € C (4)
also eine Linearkombination von ¥ (z,t) und ¥s(z,t), die selber Losungen der S.-Gl.

WOV I 0
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zu irgendeinem Potential V' (x) sein sollen.
Zeige, dass ¥ (x,t) ebenfalls eine Losung der S.-Gl. zu diesem Potential ist.
Tipp: Die Angelegenheit ist recht einfach! Setze ¥(x,t) in die S.-Gl. ein, multipliziere aus resp.
wende die Ableitungen auf die in ¥(z,t) enthaltene Summe an und suche dann Glieder auf der

linken und der rechten Gleichungsseite die aufgrund der Voraussetzung gleich sein miissen.

LV (5)

(b) Die allgemeine Losung ¥(z,t) der S.-Gl. zu einem bestimmten Potential V' (x) ist eine Linearkom-
bination der unendlich vielen separierbaren Lésungen ¥, (z,t) (n € N):

U(x,t) =D enWnl(a,t) =t Vi(a,t) + caWo(,t) +...  mit ¢, €C (6)
neN
Die ¥,,(x,t) mit n € N seien also separierbare und einzeln bereits normierte Lésungen der Schrodinger-
Gleichung. Dann gilt aber ganz allgemein (wie Griffiths allerdings erst im Kapitel 3 zeigt), dass diese
separierbaren Losungen sogenannt orthonormiert sind. Das bedeutet:!

/+OO T (2, 4) Uy (2, 1) d = { 0 firm#n (7)

oo 1 firm=n

Soll die Funktion ¥(z,t) in (6) selber wieder eine giiltige Wellenfunktion sein, so muss sie zusatzlich
normierbar sein. Zeige nun unter Verwendung von (7), dass sich daraus eine zusatzliche Anforderung
fiir die Koeffizienten ¢, (n € N, ¢,, € C) ergibt.
Tipp: Wie sieht schon wieder die Normierungsbedingung fiir ¥ (z,t) aus?

(c) Die Koeffizienten ¢; und ¢y in (4) sollen positiv und reell sein. Wie groB sind sie, wenn ¥;(x,t) und
Wy(z,t) gleich stark in der Linearkombination vertreten sein sollen?

!Das Integral in (7) ist als Skalarprodukt zweier Funktionen zu verstehen, die — um die Sprache der linearen Algebra zu
benutzen — Vektoren in einem unendlich-dimensionalen Vektorraum sind. Das Skalarprodukt zweier verschiedener separierbarer
Losungen Wy, (z,t) und W, (z,t) ergibt 0, d.h., sie sind orthogonal zueinander, und da das Skalarprodukt von ¥, (x,t) mit sich
selber 1 ergibt, sind die zudem normiert. Zusammen sagen wir: Die separierbaren Lésungen ¥, (z,t) sind orthonormiert. Genau
das ist die Aussage von Gleichung (7).

In der ebenen Geometrie im R? oder der Vektorgeometrie im R® kam vielleicht die Frage auf, weshalb wir eigentlich von zwei
orthogonalen Vektoren sprechen, wenn damit ja nur gemeint ist, dass diese beiden Vektoren senkrecht zueinander stehen. Nun
haben wir aber einen ersten Einblick in die iibergeordneten Konzepte der linearen Algebra gewonnen. Darin sind Vektoren die
Elemente von Vektorrdaumen, wobei Addition und skalare Multiplikation bestimmte Axiome zu erfiillen haben, damit es sich
um einen Vektorraum handelt. Der R? und der R® mit ihren sehr greifbaren zwei- resp. dreidimensionalen Vektoren sind nur
die aller einfachsten Varianten solcher Vektorrdume. Jetzt gerade haben wir ein weiteres Beispiel vor Augen: Anscheinend leben
die quadratintegrablen (= normierbaren) Ldsungen der Schrddinger-Gleichung ebenfalls in einem Vektorraum, der nach seinem
“Erfinder” als Hilbert-Raum bezeichnet wird. Dabei handelt es sich um einen unendlich-dimensionalen Vektorraum, was durch (6)
zum Ausdruck kommt: Jede Funktion ¥(z,t) ist Linearkombination unendlich vieler Basisvektoren ¥, (x,t) (n € N)!

Auf vielen Vektorrdumen lasst sich in der Folge ein Skalarprodukt definieren, das wiederum bestimmte Bedingungen erfiillen muss,
damit es als Skalarprodukt bezeichnet werden darf. Die Definition eines solchen Skalarproduktes hangt allerdings von der Art der
Vektoren im jeweiligen Vektorraum ab. In unserer Aufgabe haben wir vorgestellt bekommen, wie das Skalarprodukt im Hilbert-Raum
definiert wird. Erst nach der Definition des Skalarproduktes kénnen wir davon sprechen, dass zwei Vektoren orthogonal zueinander
sind. Das ist genau dann der Fall, wenn ihr Skalarprodukt O ergibt. Im Allgemeinen sprechen wir also von der Orthogonalitat
zweier Vektoren und nicht vom senkrecht zueinander Stehen, denn was genau wiirden wir uns denn unter zwei senkrecht zueinander
stehenden Funktionen vorstellen wollen?!



5. ee Erst die Linearkombination bewegt das Teilchen!

In dieser Aufgabe wird das Beispiel 2.1 auf den Seiten 52f im QM-Buch von Griffiths genau nachvollzogen.
Ich habe allerdings samtlichen Text neu verfasst, sodass wir hier ganz ohne das Buch auskommen.

Vorgabe

Ein Teilchen befinde sich in einem Zustand ¥ (z,t), der eine Linearkombination des Grundzustandes
¥y (x,t) und des ersten angeregten Zustandes Wy (z,t) sei. Da ¥ (x,t) und Wy(x,t) stationdre Zustande

sind,

schreiben wir:

U(x,t) = c1 Uy (2, 1) + co Un(z, t) = cypr (@) e B 4 cpipy(a) e 1 E2H/D (8)

Dabei wollen wir der Einfachheit halber davon ausgehen, dass 1 (x) und vo(x), also die Losungen der
zeitunabhangigen Schrédinger-Gleichung, reelle Funktionen von z sind (Y1 (z),¥2(z) € R fir alle z).
Ebenso sollen die Koeffizienten reell sein: ¢, cy € R.

()

Wir wollen nun zeigen, dass die Linearkombination fiir eine echte Zeitabhangigkeit der Wahrschein-
lichkeitsdichte | ¥ (x,t)|? sorgt. Wihrend | ¥ (x,t)[? und |Wy(x,t)[? als Wahrscheinlichkeitsdichten
stationdrer Zustande zeitlich konstant sind, gilt das fiir eine Linearkombination daraus nicht mehr!
Bestimme also einen ‘“iibersichtlichen” Ausdruck fiir | ¥(x,t)|? = ¥*(x,t) ¥ (z,t)! Verwende dabei
zuletzt die Euler-Schreibweise fiir die Sinus- oder die Cosinusfunktion, um zu zeigen, dass diese
Wahrscheinlichkeitsdichte sinusférmig hin- und herschwingt. Wie groB ist dabei die Kreisfrequenz?

Zur Veranschaulichung soll das allgemeine Resultat aus (a) auf den konkreten Fall des unendlich
tiefen Potentialtopfs angewendet werden. Dabei lauten die beiden Wellenfunktionen mit den tiefsten
Energien innerhalb des Topfs, also im Intervall [0; al:

. 9 .
Uy (z,t) = A-sin <I . x) e iEAt/h und Uy(z,t) = A-sin (—W . ac) e 1Bat/h
a a

5 2,252
mit A:\/j und En:n7T
a 2ma?

Setze nun ¢y = ¢ = % und formuliere damit das Resultat der Aufgabe (a) fiir den quantenmecha-

nischen harmonischen Oszillator.

Zum Ende wollen wir uns die drei Wahrscheinlichkeitsdichten | ¥y (x,t)|?, |Wa(z,t)|? und | ¥ (x,t)|?
fiir das Teilchen im unendlich tiefen Potentialtopf in GeoGebra aufzeichnen lassen und uns so vor
Augen fiihren, wie sich die Linearkombination “bewegt”.

Definiere zunichst einen Schieberegler fiir die Breita a des Potentialtopfs und einen fiir die Zeit ¢
(von 0 bis 10 mit 0.1er-Schritten). Gib danach die drei Wahrscheinlichkeitsdichten ein. Dabei setzt
du m = h =1, sodass es kaum Konstanten einzugeben gibt.

Nun kannst du einerseits die Zeit laufen lassen und die “Schwingung” des Teilchens im Potential-
topf betrachten, andererseits kannst du aber auch einzeln iiber die drei Wahrscheinlichkeitsdichten

integrieren und so kontrollieren, dass die Gesamtwahrscheinlichkeit stets 1 bleibt — insbesondere bei
@ (x, )]

Tipp: Definiere zu Beginn der Funktionseingabe die Konstante A = \/g Damit kannst du danach

die (reellen!) Wellenfunktionen 1 (x) und 9(x) eingeben, wodurch sich anschlieBend die Eingabe
von | ¥y (z,t)> = [¢1(2)]?, |Wa(x,t)]? = |o(x)|* und | ¥ (z,t)|? wesentlich iibersichtlicher und
einfacher gestaltet.

Hinweis: Um in GeoGebra eine Funktion auf ein bestimmtes Intervall zu beschranken, kannst du
den Befehl Funktion() verwenden. Er hat drei Argumente: Im ersten steht die Funktionsgleichung,
im zweiten die untere und im dritten die obere Grenze.



