
Übungen zum physikalischen Ergänzungsfach

Serie 12: Unendlich tiefer Potentialtopf und separierbare Lösungen

• Basic – Dinge, die du einfach gesehen und bearbeitet haben musst → obligatorisch!

•• Die Essenz – zentrale Aufgabe für das grundlegende Verständnis → obligatorisch!

◦ Noch ein Beispiel – Zusatzaufgabe mit weiterer Anwendung zur Vertiefung → fakultativ!

◦◦ Du willst es? Du kriegst es! – längere, weiterführende Aufgabe mit neuen Inhalten → fakultativ!

1. •• Zum Verständnis stationärer Zustände

Im Abschnitt 2.1 im QM-Buch von Griffiths und in der Lektion haben wir erfahren: Die stationären
Zustände sind genau die separierbaren Lösungen Ψn(x, t) der Schrödinger-Gleichung (S.-Gl.). Dazu ein
paar Kontrollfragen. . .

(a) Weshalb werden die separierbaren Lösungen der S.-Gl. als stationäre Zustände (= “unbewegliche”
oder “unveränderliche” Zustände) bezeichnet, obwohl die Wellenfunktion Ψn(x, t) = ψn(x) e

−iEnt/~

offensichtlich von der Zeit t abhängig ist und sich somit verändert?

(b) Ein Teilchen befinde sich im stationären Zustand Ψn(x, t). Was stimmt, was nicht? Weshalb?

i. Dieser stationäre Zustand entspricht einer separierbaren Lösung der S.-Gl. und weist eine ganz
bestimmte Gesamtenergie En auf.

ii. Die Erwartungswerte aller physikalischen Größen sind zeitlich konstant.

iii. Messe ich den Ort x des Teilchens, so ergibt sich ein ganz bestimmter Wert xn, der durch den
aus Ψn(x, t) berechneten Erwartungswert 〈x〉 vorausgesagt wird.

iv. Messe ich die Gesamtenergie E des Teilchens, so ergibt sich ein ganz bestimmter Wert En, der
durch den Erwartungswert 〈E〉 vorausgesagt wird.

(c) Ein Teilchen befinde sich im Zustand Ψ(x, t), der eine Linearkombination mehrerer stationärer
Zustände sein soll. Was sagst du zur folgenden Behauptung: “Alle aus Ψ(x, t) berechneten Erwar-
tungswerte sind zeitlich konstant.”

2. • Zwei Rechnungen mit der Euler-Schreibweise für Sinus und Cosinus

(a) Im Skript zu den Komplexen Zahlen wird auf Seite 37 aus den Additionstheoremen hergeleitet,
dass sich die Funktion cos2 x durch eine doppelt so schnelle Cosinusfunktion mit halber Amplitude
ersetzen lässt:

cos2 x =
1

2
+

1

2
cos(2x)

Nachdem wir nun aber die Euler-Schreibweise für die Cosinusfunktion kennengelernt haben, ist die
im Skript gezeigte Herleitung unter Verwendung von Additionstheoremen resp. Doppelwinkelformeln
eigentlich eher ein Umweg. Direkter geht’s wie folgt:

cos2 x =

(

eix + e−ix

2

)2

=
e2ix + 2eixe−ix + e−2ix

4
=

1

2

e2ix + e−2ix

2
+

2

4
=

1

2
cos(2x) +

1

2

Zeige in gleicher Weise, dass sin2 x = 1

2
−

1

2
cos(2x) ist.

(b) Lasse dir den Graphen von f(x) = cos2 x · sinx in GeoGebra aufzeichnen und beweise anschließend
unter Verwendung der Euler-Schreibweise von Sinus und Cosinus die folgende Identität:

cos2 x sinx ≡
1

4

(

sin(3x) + sinx
)

Von der Richtigkeit dieser Identität kannst du dich natürlich direkt in GeoGebra überzeugen.
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3. •• Orthonormalität der ψn(x) im unendlich tiefen Potenzialtopf

Im Buch zeigt Griffiths auf Seite 55, dass die Ortsanteile der separierbaren Lösungen Ψn(x, t) im unendlich
tiefen Potentialtopf der Breite a gegeben sind durch

ψn(x) =

√

2

a
· sin(knx) mit kn =

nπ

a
und n ∈ N . (1)

(a) Weshalb ist der Normierungsfaktor
√

2

a gar nicht mehr vom Index n abhängig?

Denke nur grafisch über diese Frage nach! Wie sehen denn die Graphen von |ψn(x)|
2 aus?

Tipp: Lasse dir |ψn(x)|
2 in Abhängigkeit eine Schiebereglers n in GeoGebra aufzeichnen.

(b) Der Beweis der Orthonormalität der ψn(x) oben auf Seite 57 geht ein bisschen gar schnell. . .

Das anfängliche Integral

∫

+∞

−∞
ψ∗
m(x)ψn(x) dx mit m,n ∈ N (2)

sollte für m = n den Wert 1 ergeben und ansonsten gleich 0 sein. Genau wenn dies der Fall ist,
sagen wir, die ψn(x) sind orthogonal und normiert – oder eben in einem Wort: orthonormiert.

Gehe nun Schritt für Schritt durch diesen Orthonormalitätsbeweis hindurch. Dabei triffst du auf die
folgenden Teilaufgaben:

i. Besonders anspruchsvoll ist der Schritt von der ersten zur zweiten Zeile. Offenbar gilt:

2 sin
(mπ

a
x
)

sin
(nπ

a
x
)

= cos

(

m− n

a
πx

)

− cos

(

m+ n

a
πx

)

(3)

Dies kannst du mittels der Euler-Schreibweisen für die Sinus- und die Cosinusfunktion zeigen.
Am besten führst du diesen Schritt vor der ganzen Integralberechnung separat durch.

ii. Den Schritt von der zweiten zur dritten Zeile, also die Ermittlung der Stammfunktion, kannst
du mittels einer linearen Substitution durchgeführen, wenn du bereits über diese Integraltechnik
verfügst. Ansonsten kann man auch an eine “umgekehrte Kettenregel” denken:

∫ a

0

cos(kx) dx =
1

k
·
[

sin(kx)
]

∣

∣

∣

a

0

Der Faktor 1

k hebt die innere Ableitung bei der Differentiation von sin(kx) aus, sodass dabei
nur cos(kx) entsteht.

iii. Weshalb ergibt sich auf der letzten Zeile der Wert 0, wenn m 6= n ist?
Tipp: Denke zur Beantwortung über die Nullstellen der Sinusfunktion nach!

iv. Unterhalb des Beweises sagt Griffiths, dass der Beweis fürm = n nicht funktioniert. Bei welchem
Schritt scheitert er genau und weshalb?

v. Für m = n müsste eigentlich die gesamte Rechnung nochmals separat durchgeführt werden.
Weshalb verzichtet Griffiths darauf resp. weshalb weiß er bereits, dass dies sicher der Fall ist?
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4. ◦ Allgemeines zu Linearkombinationen separierbarer Lösungen

Auf Seite 51 im Griffiths lesen wir: “Nun hat aber, wie Sie leicht selbst überprüfen können, die (zeitabhängi-
ge) Schrödinger-Gleichung die Eigenschaft, dass eine beliebige Linearkombination von Lösungen selbst
auch eine Lösung ist.”

(a) Dann überprüfen wir das doch rasch! Gegeben sei eine Wellenfunktion

Ψ(x, t) = c1Ψ1(x, t) + c2Ψ2(x, t) mit c1, c2 ∈ C (4)

also eine Linearkombination von Ψ1(x, t) und Ψ2(x, t), die selber Lösungen der S.-Gl.

i~
∂Ψ

∂t
= −

~
2

2m

∂2Ψ

∂x2
+ VΨ (5)

zu irgendeinem Potential V (x) sein sollen.

Zeige, dass Ψ(x, t) ebenfalls eine Lösung der S.-Gl. zu diesem Potential ist.

Tipp: Die Angelegenheit ist recht einfach! Setze Ψ(x, t) in die S.-Gl. ein, multipliziere aus resp.
wende die Ableitungen auf die in Ψ(x, t) enthaltene Summe an und suche dann Glieder auf der
linken und der rechten Gleichungsseite die aufgrund der Voraussetzung gleich sein müssen.

(b) Die allgemeine Lösung Ψ(x, t) der S.-Gl. zu einem bestimmten Potential V (x) ist eine Linearkom-
bination der unendlich vielen separierbaren Lösungen Ψn(x, t) (n ∈ N):

Ψ(x, t) =
∑

n∈N

cnΨn(x, t) = c1Ψ1(x, t) + c2Ψ2(x, t) + . . . mit cn ∈ C (6)

DieΨn(x, t)mit n ∈ N seien also separierbare und einzeln bereits normierte Lösungen der Schrödinger-
Gleichung. Dann gilt aber ganz allgemein (wie Griffiths allerdings erst im Kapitel 3 zeigt), dass diese
separierbaren Lösungen sogenannt orthonormiert sind. Das bedeutet:1

∫

+∞

−∞
Ψ

∗
m(x, t)Ψn(x, t) dx =

{

0 für m 6= n

1 für m = n
(7)

Soll die Funktion Ψ(x, t) in (6) selber wieder eine gültige Wellenfunktion sein, so muss sie zusätzlich
normierbar sein. Zeige nun unter Verwendung von (7), dass sich daraus eine zusätzliche Anforderung
für die Koeffizienten cn (n ∈ N, cn ∈ C) ergibt.

Tipp: Wie sieht schon wieder die Normierungsbedingung für Ψ(x, t) aus?

(c) Die Koeffizienten c1 und c2 in (4) sollen positiv und reell sein. Wie groß sind sie, wenn Ψ1(x, t) und
Ψ2(x, t) gleich stark in der Linearkombination vertreten sein sollen?

1Das Integral in (7) ist als Skalarprodukt zweier Funktionen zu verstehen, die – um die Sprache der linearen Algebra zu
benutzen – Vektoren in einem unendlich-dimensionalen Vektorraum sind. Das Skalarprodukt zweier verschiedener separierbarer
Lösungen Ψm(x, t) und Ψn(x, t) ergibt 0, d.h., sie sind orthogonal zueinander, und da das Skalarprodukt von Ψn(x, t) mit sich
selber 1 ergibt, sind die zudem normiert. Zusammen sagen wir: Die separierbaren Lösungen Ψn(x, t) sind orthonormiert. Genau
das ist die Aussage von Gleichung (7).

In der ebenen Geometrie im R
2 oder der Vektorgeometrie im R

3 kam vielleicht die Frage auf, weshalb wir eigentlich von zwei
orthogonalen Vektoren sprechen, wenn damit ja nur gemeint ist, dass diese beiden Vektoren senkrecht zueinander stehen. Nun
haben wir aber einen ersten Einblick in die übergeordneten Konzepte der linearen Algebra gewonnen. Darin sind Vektoren die
Elemente von Vektorräumen, wobei Addition und skalare Multiplikation bestimmte Axiome zu erfüllen haben, damit es sich
um einen Vektorraum handelt. Der R

2 und der R
3 mit ihren sehr greifbaren zwei- resp. dreidimensionalen Vektoren sind nur

die aller einfachsten Varianten solcher Vektorräume. Jetzt gerade haben wir ein weiteres Beispiel vor Augen: Anscheinend leben
die quadratintegrablen (= normierbaren) Lösungen der Schrödinger-Gleichung ebenfalls in einem Vektorraum, der nach seinem
“Erfinder” als Hilbert-Raum bezeichnet wird. Dabei handelt es sich um einen unendlich-dimensionalen Vektorraum, was durch (6)
zum Ausdruck kommt: Jede Funktion Ψ(x, t) ist Linearkombination unendlich vieler Basisvektoren Ψn(x, t) (n ∈ N)!

Auf vielen Vektorräumen lässt sich in der Folge ein Skalarprodukt definieren, das wiederum bestimmte Bedingungen erfüllen muss,
damit es als Skalarprodukt bezeichnet werden darf. Die Definition eines solchen Skalarproduktes hängt allerdings von der Art der
Vektoren im jeweiligen Vektorraum ab. In unserer Aufgabe haben wir vorgestellt bekommen, wie das Skalarprodukt im Hilbert-Raum
definiert wird. Erst nach der Definition des Skalarproduktes können wir davon sprechen, dass zwei Vektoren orthogonal zueinander
sind. Das ist genau dann der Fall, wenn ihr Skalarprodukt 0 ergibt. Im Allgemeinen sprechen wir also von der Orthogonalität
zweier Vektoren und nicht vom senkrecht zueinander Stehen, denn was genau würden wir uns denn unter zwei senkrecht zueinander
stehenden Funktionen vorstellen wollen?!
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5. •• Erst die Linearkombination bewegt das Teilchen!

In dieser Aufgabe wird das Beispiel 2.1 auf den Seiten 52f im QM-Buch von Griffiths genau nachvollzogen.
Ich habe allerdings sämtlichen Text neu verfasst, sodass wir hier ganz ohne das Buch auskommen.

Vorgabe

Ein Teilchen befinde sich in einem Zustand Ψ(x, t), der eine Linearkombination des Grundzustandes
Ψ1(x, t) und des ersten angeregten Zustandes Ψ2(x, t) sei. Da Ψ1(x, t) und Ψ2(x, t) stationäre Zustände
sind, schreiben wir:

Ψ(x, t) = c1Ψ1(x, t) + c2Ψ2(x, t) = c1ψ1(x) e
−iE1t/~ + c2ψ2(x) e

−iE2t/~ (8)

Dabei wollen wir der Einfachheit halber davon ausgehen, dass ψ1(x) und ψ2(x), also die Lösungen der
zeitunabhängigen Schrödinger-Gleichung, reelle Funktionen von x sind (ψ1(x), ψ2(x) ∈ R für alle x).
Ebenso sollen die Koeffizienten reell sein: c1, c2 ∈ R.

(a) Wir wollen nun zeigen, dass die Linearkombination für eine echte Zeitabhängigkeit der Wahrschein-
lichkeitsdichte |Ψ(x, t)|2 sorgt. Während |Ψ1(x, t)|

2 und |Ψ2(x, t)|
2 als Wahrscheinlichkeitsdichten

stationärer Zustände zeitlich konstant sind, gilt das für eine Linearkombination daraus nicht mehr!

Bestimme also einen “übersichtlichen” Ausdruck für |Ψ(x, t)|2 = Ψ
∗(x, t)Ψ(x, t)! Verwende dabei

zuletzt die Euler-Schreibweise für die Sinus- oder die Cosinusfunktion, um zu zeigen, dass diese
Wahrscheinlichkeitsdichte sinusförmig hin- und herschwingt. Wie groß ist dabei die Kreisfrequenz?

(b) Zur Veranschaulichung soll das allgemeine Resultat aus (a) auf den konkreten Fall des unendlich
tiefen Potentialtopfs angewendet werden. Dabei lauten die beiden Wellenfunktionen mit den tiefsten
Energien innerhalb des Topfs, also im Intervall [0; a]:

Ψ1(x, t) = A · sin
(π

a
· x

)

· e−iE1t/~ und Ψ2(x, t) = A · sin

(

2π

a
· x

)

· e−iE2t/~

mit A =

√

2

a
und En =

n2π2~2

2ma2

Setze nun c1 = c2 =
1√
2
und formuliere damit das Resultat der Aufgabe (a) für den quantenmecha-

nischen harmonischen Oszillator.

(c) Zum Ende wollen wir uns die drei Wahrscheinlichkeitsdichten |Ψ1(x, t)|
2, |Ψ2(x, t)|

2 und |Ψ(x, t)|2

für das Teilchen im unendlich tiefen Potentialtopf in GeoGebra aufzeichnen lassen und uns so vor
Augen führen, wie sich die Linearkombination “bewegt”.

Definiere zunächst einen Schieberegler für die Breita a des Potentialtopfs und einen für die Zeit t
(von 0 bis 10 mit 0.1er-Schritten). Gib danach die drei Wahrscheinlichkeitsdichten ein. Dabei setzt
du m = ~ = 1, sodass es kaum Konstanten einzugeben gibt.

Nun kannst du einerseits die Zeit laufen lassen und die “Schwingung” des Teilchens im Potential-
topf betrachten, andererseits kannst du aber auch einzeln über die drei Wahrscheinlichkeitsdichten
integrieren und so kontrollieren, dass die Gesamtwahrscheinlichkeit stets 1 bleibt – insbesondere bei
|Ψ(x, t)|2.

Tipp: Definiere zu Beginn der Funktionseingabe die Konstante A =
√

2

a . Damit kannst du danach

die (reellen!) Wellenfunktionen ψ1(x) und ψ2(x) eingeben, wodurch sich anschließend die Eingabe
von |Ψ1(x, t)|

2 = |ψ1(x)|
2, |Ψ2(x, t)|

2 = |ψ2(x)|
2 und |Ψ(x, t)|2 wesentlich übersichtlicher und

einfacher gestaltet.

Hinweis: Um in GeoGebra eine Funktion auf ein bestimmtes Intervall zu beschränken, kannst du
den Befehl Funktion() verwenden. Er hat drei Argumente: Im ersten steht die Funktionsgleichung,
im zweiten die untere und im dritten die obere Grenze.
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