
Methoden der mathematischen Physik

Scheinkräfte in rotierenden Bezugssystemen

1 Die Winkelgeschwindigkeit als Vektor ~ω

Rotierendes System: Auf diesen Seiten betrachten wir die Bewegung von Körpern in Bezugssystemen,
die relativ zu einem Inertialsystem rotieren. Die rotierenden Koordinatenachen sind dabei in der
Regel fest mit einem starren Körper verbunden. Das wichtigste Beispiel ist ein Satz von Achsen,
die fest mit der rotierenden Erde verbunden sind.

Fester Rotationspunkt: Bei der Diskussion von Drehbewegungen starrer Körper gibt es eigentlich nur
zwei Fälle, mit denen wir uns beschäftigen müssen: Manchmal rotiert der Körper um einen Punkt
des Körpers, der (in einem bestimmten Inertialsystem) fest ist; Beispiele dafür sind ein Rad, das sich
um eine feste Achse dreht, oder ein schwingendes Pendel, das an einem festen Punkt aufgehängt
ist. Wenn der Körper nicht um einen festen Punkt rotiert (beispielsweise ein Ball, der durch die
Luft fliegt und sich dabei dreht), gehen wir in zwei Schritten vor: Zunächst bestimmen wir die
Bewegung des Schwerpunkts, und dann untersuchen wir die Drehbewegung des Körpers in seinem
Schwerpunktsystem. In diesem Schwerpunktsystem ist – der Name sagt es – der Schwerpunkt
fest. Damit geht es also bei der Untersuchung eines rotierenden Körpers auf jeden Fall um einen
Körper, bei dem mindestens ein Punkt effektiv fest ist. Sinnvollerweise legen wir diesen Punkt in
den Ursprung O des Koordinatensystems. Eine Rotationsachse, um die der Körper rotiert, muss
durch O verlaufen.1

Die vektorielle Winkelgeschwindigkeit: Zur vollständigen Beschreibung der Drehbewegung benötigen
wir die Angabe der Drehachse und ebenso die Rotationsrate, also die Drehgeschwindigkeit. Die
Richtung der Drehachse kann man mit einem Einheitsvektor ~eu angeben, die Drehgeschwindigkeit
mit einer Winkelgeschwindigkeit ω = dϕ

dt . Beispielsweise könnte sich ein Karussell mit ω = 10 rad
min

um eine vertikale Achse ~u drehen.

Es ist oftmals bequem, den Einheitsvektor ~eu mit ω zu kombinieren; damit erhält man den Vektor
der Winkelgeschwindigkeit

~ω = ω · ~eu (1)
Dieser Vektor ~ω gibt sowohl die Richtung der Drehach-

se (nämlich ~u, d.h. die Richtung von ~w), als auch die
Drehgeschwindigkeit an (nämlich ω, den Betrag von ~ω).
Allerdings ist der Vektor ~ω bislang noch nicht eindeutig
definiert. Um beim Beispiel mit dem Karussell von vorhin
zu bleiben: Wenn es sich um eine vertikale Achse dreht,
zeigt der Vektor ~ω dann nach oben oder nach unten?
Wir beseitigen diese Mehrdeutigkeit mithilfe der Rechte-
Hand-Regel (RHR) und wählen die Richtung von ~ω so,
dass die Finger der rechten Hand in die Drehrichtung
zeigen, wenn der rechte Daumen in die Richtung von ~ω

weist. Alternativ kann man die Konvention treffen, dass
man den Körper im Uhrzeigersinn rotieren sieht, wenn
man in Richtung von ~ω blickt. Resp. umgekehrt: Kommt
mir der Vektor ~ω entgegen, so sehe ich den Körper im
Gegenuhrzeigersinn rotieren.

1Diese Aussage ist nur ziemlich schwer zu beweisen, doch sie erscheint so selbstverständlich, dass ich hoffe, es ist in
Ordnung, wenn wir sie hier auch ohne Beweis akzeptieren.
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Veränderbare Winkelgeschwindigkeit: Es ist wichtig sich klarzumachen, dass sich die Winkelgeschwin-
digkeit ~ω mit der Zeit ändern kann: Wenn sich die Drehgeschwindigkeit verändert, ändert sich der
Betrag von ~ω; wenn sich die Drehachse verändert, ändert ~ω seine Richtung. Wenn beispielsweise
ein Raumschiff außer Kontrolle gerät und zu taumeln beginnt, ändert die Winkelgeschwindigkeit
meist sowohl ihren Betrag als auch ihre Richtung. In einem solchen Fall ist ~ω = ~ω(t) die momen-
tane Winkelgeschwindigkeit zur Zeit t. Es gibt andererseits viele interessante Fälle, in denen ~ω

konstant ist (in Betrag und Richtung). Das gilt beispielsweise in hervorragender Näherung für die
Winkelgeschwindigkeit der um ihre Achse rotierenden Erde.

2 Kugelkoordinaten

Einen Punkt P im dreidimensionalen Raum R
3 beschreiben wir in der Vektorgeometrie normalerweise

durch Angabe eines kartesischen Koordinatentripels resp. durch einen entsprechenden Ortsvektor :

P (x, y, z) resp. ~r =





x

y

z





So ähnlich, wie wir in der Ebene zu Polarkoor-
dinaten wechseln können, gibt es nun auch im
Raum die Möglichkeit zu sogenannten Kugel-
koordinaten überzugehen. Dies empfiehlt sich
typischerweise bei der Untersuchung kugelsym-

metrischer Probleme – die Mathematik des Pro-
blems wird dadurch in der Regel einfacher. We-
gen der Dreidimensionalität des Raumes werden
immer noch drei Angaben (r, θ, φ) zur Beschrei-
bung eines Ortes ~r benötigt:

• Der Abstand r zum Ursprung,

• der Azimutwinkel φ (= Drehwinkel in der x-y-Ebene),

• der Polarwinkel θ (= Winkel zwischen der z-Achse und dem Ortsvektor ~r).

Die kartesischen Koordinaten von P lassen sich relativ leicht aus dessen Kugelkoordinaten berechnen.
So erkennen wir in obiger Grafik zunächst, dass:

z = r cos θ und a = r sin θ

Sobald man a kennt, folgt für x und y:

x = a cosφ = r sin θ cosφ und y = a sinφ = r sin θ sinφ

Somit lässt sich für den kartesischen Ortsvektor ~r des Punktes P schreiben:

~r =





x

y

z



 =





r cosφ sin θ
r sinφ sin θ

r cos θ



 (2)

Natürlich gibt es auch in die Gegenrichtung entsprechende Umrechnungen, aber damit brauchen wir uns
nicht auseinanderzusetzen. Nur die offensichtlichste davon sei hier rasch notiert:

r = |~r | =
√

x2 + y2 + z2 (3)
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3 Eine nützliche Beziehung: ~v = ~ω × ~r

Es gibt einen wichtigen Zusammenhang zwischen
der Winkelgeschwindigkeit ~ω, mit der sich ein
Körper dreht, und der linearen Geschwindigkeit
~v eines beliebigen Punkts P dieses Körpers.

Werfen wir beispielsweise einen Blick auf die
Erde, die sich mit der Winkelgeschwindigkeit ~ω

um eine Achse durch ihren (stationär angenom-
menen) Mittelpunkt O dreht. Betrachten wir nun
einen beliebigen, aber auf der Erdoberfläche fe-
sten Punkt P , beispielsweise unser Schulzim-
mer, mit einer gewissen Position ~r relativ zu O.
Wir können ~r durch Kugelkoordinaten (r, θ, ϕ)
angeben, wenn die z-Achse durch den Nordpol
verläuft. Der Polarwinkel θ ist dann die sogenann-
te Komplementbreite oder Kolatitude. (Komple-
mentbreite deshalb, weil man die übliche geografi-
sche Breite vom Äquator aus zum Pol hin misst.)

Bei der Drehung der Erde um ihre Achse
bewegt sich der Punkt P in östlicher Richtung auf seinem Breitenkreis c mit einem Radius von ̺ = r sin θ.
Somit ist der Betrag v der Bahngeschwindigkeit ~v gegeben durch

v = ω̺ = ωr sin θ (4)

Und wenn wir in der Abbildung oben die Richtungen der verschiedenen Vektoren betrachten, dann
erkennen wir, dass das Vektorprodukt ~ω × ~r gerade den Geschwindigkeitsvektor ~v ergibt. Das stimmt
sogar inklusive des durch (4) gegebenen Betrages, denn:

|~ω × ~r | = |~ω| · |~r | · sin θ = ωr sin θ = v

Es gilt also tatsächlich vektoriell:
~v = ~ω × ~r (5)

Es ist leicht zu erkennen, dass dieses Ergebnis nicht von der Art des rotierenden Körpers abhängt; sie
gilt für jeden Punkt eines starren Körpers, der mit der Winkelgeschwindigkeit ~ω rotiert, wenn wir den
Ursprung O auf die Drehachse legen.

(5) ist natürlich eine Verallgemeinerung des Zusammenhangs v = ωr, den wir für die Bahngeschwin-
digkeit eines Punkts auf dem Umfang eines sich drehenden Rades mit dem Radius r bereits kennen.

Tatsächlich beschreibt (5) die momentane Veränderungsrate eines beliebigen (!) mit dem starren
Körper verbundenen Vektors aufgrund der durch ~ω beschriebenen Drehbewegung. Es handelt sich dabei
also um die zeitliche Ableitung des Vektors (aufgrund von ~ω)! So ist im Falle des Ortsvektors ~r die
Geschwindigkeit ~v eben die zeitliche Veränderungsrate des Ortes ~r, wie wir ja bereits wissen:

allgemein: ~v =
d~r

dt
und bei durch ~ω beschriebener Drehbewegung speziell: ~v = ~ω × ~r (6)

Das gilt nun aber für beliebige Vektoren! Wenn beispielsweise ~e ein mit dem Körper verbundener Ein-
heitsvektor ist, dann ist seine Änderungsgeschwindigkeit aufgrund der momentan vorhandenen Rotation
~ω (betrachtet in einem nicht-rotierenden Bezugssystem) eben durch

d~e

dt
= ~ω × ~e (7)

gegeben. Dieses Ergebnis werden wir in Kürze anwenden.
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4 Die Winkelgeschwindigkeit eines rotierenden Bezugssystems: ~Ω

Bei der Notation von Winkelgeschwindigkeiten folgen wir normalerweise folgender Konvention: Wir ver-
wenden den kleinen Buchstaben ~ω für die Winkelgeschwindigkeit der Drehbewegung eines Körpers in
irgendeinem Bezugssystem. Und auf der anderen Seite verwenden wir den Großbuchstaben ~Ω für die
Winkelgeschwindigkeit eines rotierenden Bezugssystems (= Nicht-Inertialsystem) relativ zu einem Iner-
tialsystem. Diese Unterscheidung ist ganz analog zu der Konvention unserer bisheriger Betrachtungen
von beschleunigten Bezugssystemen, in denen wir die Großbuchstaben ~A und ~V für die Beschleunigung
bzw. die Geschwindigkeit eines Nicht-Inertialsystems bezüglich eines Inertialsystems verwendet haben.

In der Praxis ist ~Ω meist eine gegebene, bekannte Winkelgeschwindigkeit, etwa die Winkelgeschwin-
digkeit der Erde, die sich einmal pro Tag um ihre Achse dreht. Im Folgenden werden wir uns nun mit
der Bewegung von Körpern in einem rotierenden Bezugssystem S befassen; gemäß unserer Konvention
bezeichnen wir die Winkelgeschwindigkeit dieses Systems aus der Sicht eines Inertialsystems S0 mit ~Ω.

5 Zeitableitungen in einem rotierenden Bezugssystem

Nun sind wir bereit für die Untersuchung der Bewegungsgleichungen für einen Körper in einem Be-
zugssystem S, das mit der Winkelgeschwindigkeit ~Ω relativ zu einem Inertialsystem S0 rotiert. Unsere
Schlussfolgerungen gelten aber für ein beliebiges rotierendes Bezugssystem; das bei Weitem wichtigste
Beispiel ist ein Bezugssystem, das mit der rotierenden Erde verbunden ist, und dieses Beispiel wollen wir
immer im Hinterkopf behalten. Legen wir deshalb eine kurze Pause ein und berechnen wir die Rotations-
geschwindigkeit der Erde, die sich innerhalb von 24 Stunden einmal um ihre Achse dreht.2 Ein fest mit
der Erde verbundenes Bezugssystem hat also die Rotationsgeschwindigkeit

Ω =
2π rad

24 · 3600 s
≈ 7.3 · 10−5 rad

s
(8)

Nur weil dieser Wert so gering, ist, können wir ihn oft gänzlich vernachlässigen. Wir können aber zeigen,
dass die Drehung der Erde messbare Auswirkungen beispielsweise auf die Bewegung von Geschossen, von
Pendeln und von anderen Systemen hat. Ferner gibt es andere Nicht-Inertialwirkungen (insbesondere die
Gezeiten), die mit der Bahnbewegung von Erde und Mond zusammenhängen. Sie spielen allerdings bei
den Systemen, die wir hier behandeln wollen, eine weit weniger wichtige Rolle, sodass wir sie fürs Erste
vernachlässigen können.

Wir wollen annehmen, dass die beiden Syste-
me S und S0 – wie in der Abbildung rechts ge-
zeigt – einen gemeinsamen Ursprung O haben. Die
einzige Bewegung von S relativ zu S0 ist also ei-
ne Drehung mit der Winkelgeschwindigkeit ~Ω. Der
gemeinsame Ursprung O könnte beispielsweise der
Erdmittelpunkt sein, S könnte ein Satz von fest
mit der Erde verbundenen Koordinatenachsen sein
und S0 ein Satz von Achsen mit demselben Ur-
sprung, deren Richtungen aber bezüglich weit ent-
fernter Sterne fest sind. Das Bezugssystem S ist
zwar bequem zu verwenden, ist aber kein Inertial-
system; das System S0 ist in seiner Verwendung
relativ unbequem, ist aber inertial.

2Genaugenommen ist die Dauer für eine Erdrotation ein siderischer Tag, d.h. die Zeit, in der sich die Erde relativ zu
einem weit entfernten Stern einmal um ihre Achse dreht. Dieser Wert ist um einen Faktor 365/366 kürzer als der Sonnentag,
doch die Differenz ist so klein, dass wir uns hier nicht darum kümmern müssen.
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Betrachten wir nun einen beliebigen Vektor ~Q. Das kann beispielsweise der Geschwindigkeits- oder der
Ortsvektor eines Körpers oder irgendein anderer Vektor von Interesse sein. Unsere erste Aufgabe besteht
darin, die in S0 gemessene zeitliche Änderungsrate von ~Q mit der entsprechenden in S gemessenen Rate
zu verbinden. Um diese beiden Änderungsraten voneinander zu unterscheiden, benutzen wir zeitweilig
folgende Schreibweise:

(

d ~Q

dt

)

S0

=

(

Änderungsrate des Vektors ~Q

relativ zum Inertialsystem S0

)

und

(

d ~Q

dt

)

S

=

(

Änderungsrate desselben Vektors ~Q

relativ zum rotierenden Bezugssystem S

)

Um diese beiden Änderungsraten miteinander zu vergleichen, stelle ich den Vektor ~Q mithilfe der drei
orthogonalen Einheitsvektoren ~ex, ~ey und ~ez dar, die fest mit dem rotierenden System S verbunden sind.
Damit haben wir:

~Q = Qx~ex +Qy~ey +Qz~ez (9)

Diese Darstellung ist so gewählt, dass sie für einen Beobachter im Bezugssystem S besonders bequem
ist, weil die Einheitsvektoren ~ex, ~ey und ~ez fest mit diesem System verbunden sind. Qx, Qy und Qz sind

dann die Komponenten von ~Q im System S, also bezüglich dieser Einheitsvektoren.
Natürlich gibt es eine gleiche Darstellung des Vektors ~Q auch im Inertialsystem S0:

~Q = Qx,0~ex,0 +Qy,0~ey,0 +Qz,0~ez,0 (10)

Der einzige Unterschied ist, dass die Vektoren ~ex, ~ey und ~ez für einen Beobachter in S fest sind, für einen
Beobachter in S0 hingegen rotieren, während es bei den Vektoren ~ex,0, ~ey,0 und ~ez,0 gerade andersum
ist.

Leiten wir nun die Darstellung (9) in beiden Bezugssystemen nach der Zeit ab. Im Bezugssystem S

sind die Vektoren ~ex, ~ey und ~ez konstant und wir erhalten einfach:

(

d ~Q

dt

)

S

=
dQx

dt
~ex +

dQy

dt
~ey +

dQz

dt
~ez (11)

Dabei sind dQx

dt ,
dQy

dt und dQz

dt die Veränderungsraten der Vektorkomponenten von ~Q im System S.
Im Bezugssystem S0 verändern sich hingegen die Vektoren ~ex, ~ey und ~ez ebenfalls mit der Zeit. Die

zeitliche Ableitung von (9) ergibt also unter dreifacher Verwendung der Produktregel:

(

d ~Q

dt

)

S0

=
dQx

dt
~ex +Qx

d~ex
dt

︸ ︷︷ ︸

= ( d
dt

(Qx~ex))
S0

+
dQy

dt
~ey +Qy

d~ey
dt

︸ ︷︷ ︸

= ( d
dt

(Qy~ey))
S0

+
dQz

dt
~ez +Qz

d~ez
dt

︸ ︷︷ ︸

= ( d
dt

(Qz~ez))
S0

(12)

Nun lassen sich die Ableitungen der Einheitsvektoren leicht mithilfe der “nützlichen Beziehung” (7)
darstellen. Die Vektoren ~ex, ~ey und ~ez sind fest mit dem System S verbunden, das sich mit der Winkel-

geschwindigkeit ~Ω relativ zu S0 dreht. Die Änderungsraten dieser Vektoren sind somit gegeben durch

d~ex
dt

= ~Ω× ~ex ,
d~ey
dt

= ~Ω× ~ey und
d~ez
dt

= ~Ω× ~ez (13)

womit wir für (12) neu schreiben:

(

d ~Q

dt

)

S0

=
dQx

dt
~ex +Qx(~Ω× ~ex) +

dQy

dt
~ey +Qy(~Ω× ~ey) +

dQz

dt
~ez +Qz(~Ω× ~ez) (14)
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Dieses Ergebnis stellen wir um und fassen geeignet zusammen:
(

d ~Q

dt

)

S0

=
dQx

dt
~ex +Qx(~Ω× ~ex) +

dQy

dt
~ey +Qy(~Ω× ~ey) +

dQz

dt
~ez +Qz(~Ω× ~ez)

=
dQx

dt
~ex +

dQy

dt
~ey +

dQz

dt
~ez

︸ ︷︷ ︸

=
(

d~Q
dt

)

S

+ ~Ω×
(
Qx ~ex

)
+ ~Ω×

(
Qy ~ey

)
+ ~Ω×

(
Qz ~ez

)

=

(

d ~Q

dt

)

S

+ ~Ω×
(
Qx~ex +Qy~ey +Qz~ez
︸ ︷︷ ︸

= ~Q

)

Dabei haben wir sowohl (11), als auch (9) verwendet und zudem von der Bilinearität und der Distribu-
tivität des Vektorproduktes Gebrauch gemacht.3 Somit erhalten wir insgesamt für die Ableitung von ~Q

im System S0: (

d ~Q

dt

)

S0

=

(

d ~Q

dt

)

S

+ ~Ω× ~Q (15)

Diese wichtige Gleichung verbindet die Ableitung eines beliebigen Vektors ~Q (gemessen in dem Inertial-
system S0) mit der entsprechenden Ableitung im rotierenden Bezugssystem S.

6 Das Aktionsprinzip in einem rotierenden Bezugssystem

Nun sind wir soweit, dass wir die Form des 2. Newton’schen Axioms (= Aktionsprinzip) in einem rotieren-
den Bezugssystem S bestimmen können. Um die Angelegenheit zu vereinfachen, werden wir annehmen,
dass die Winkelgeschwindigkeit ~Ω von S bezüglich S0 konstant ist, so wie es (zumindest in hervorragender
Näherung) für eine fest mit der rotierenden Erde verbundene Achse gilt.

Betrachten wir nun ein Teilchen der Masse m mit dem Ortsvektor ~r. Im Inertialsystem S0 unterliegt
das Teilchen dem Aktionsprinzip in seiner gewohnten Form

m

(
d2~r

dt2

)

S0

= ~F . (16)

Dabei bezeichnet wie üblich ~F die resultierende Kraft auf das Teilchen, d.h. die Vektorsumme aller
Kräfte, die wir in dem Inertialsystem ermittelt haben. Die Ableitung auf der linken Seite ist natürlich die
Ableitung, wie sie ein Beobachter im Inertialsystem S0, bestimmt. Wir können diese Ableitung nun aber
mithilfe von Gleichung (15) durch die Ableitungen ausdrücken, die im rotierenden System S bestimmt
werden. Zunächst gilt gemäss (15):

(
d~r

dt

)

S0

=

(
d~r

dt

)

S

+ ~Ω× ~r (17)

Für die zweite Ableitung schreiben wir zunächst:
(
d2~r

dt2

)

S0

=

(
d

dt

)

S0

(
d~r

dt

)

S0

=

(
d

dt

)

S0

[(
d~r

dt

)

S

+ ~Ω× ~r

]

︸ ︷︷ ︸

=:~a

Hierin ist ~a =
(
d~r
dt

)

S
+ ~Ω × ~r selber wieder ein Vektor, auf den die durch (15) gegebene Vorschrift für

die Ableitung im System S0, also
(
d
dt

)

S0
, erneut angewendet wird.

3Bilinearität: k ·

(

~a×
~b
)

=
(

k · ~a
)

×
~b = ~a×

(

k ·
~b
)

. Distributivität: ~a×

(

~b+ ~c
)

= ~a×
~b+ ~a× ~c.
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Das ist bestimmt ein wenig verwirrlich, wenn man es das erste Mal sieht. Diese Verwirrlichkeit ist
aber vor allem der Notation geschuldet. Daher schreibe ich diese neuerliche Ableitung mittels (15) zuerst
unter Verwendung des Vektors ~a auf und setze danach den grösseren Ausdruck für ~a dafür zurück ein:

(
d2~r

dt2

)

S0

=

(
d~a

dt

)

S0

=

(
d~a

dt

)

S

+ ~Ω× ~a

=

(
d

dt

)

S

[(
d~r

dt

)

S

+ ~Ω× ~r

]

+ ~Ω×

[(
d~r

dt

)

S

+ ~Ω× ~r

]

=

(
d2~r

dt2

)

S

+

(

d
(
~Ω× ~r

)

dt

)

S

+ ~Ω×

(
d~r

dt

)

S

+ ~Ω×
(
~Ω× ~r

)

Dabei habe ich im letzten Schritt einmal mehr die Summenregel für die Ableitung und die Distributivität
des Vektorproduktes verwendet.

Dieses Ergebnis sieht ziemlich unübersichtlich aus, doch wir können es ein wenig aufräumen:

1. Wir wollen, wie bereits früher gesagt, von einer konstanten Drehbewegung ausgehen. Dann ist
d~Ω
dt = 0 (das gilt in beiden Bezugssystemen). Dadurch vereinfacht sich der zweite Summand von
oben aufgund der auch mit dem Vektorprodukt funktionierenden Produktregel für Ableitungen:

(

d
(
~Ω× ~r

)

dt

)

S

=

(

d~Ω

dt

)

S
︸ ︷︷ ︸

=0

× ~r + ~Ω×

(
d~r

dt

)

S

= ~Ω×

(
d~r

dt

)

S

(18)

So schreiben wir insgesamt neu:
(
d2~r

dt2

)

S0

=

(
d2~r

dt2

)

S

+ ~Ω×

(
d~r

dt

)

S

+ ~Ω×

(
d~r

dt

)

S

+ ~Ω×
(
~Ω× ~r

)

=

(
d2~r

dt2

)

S

+ 2 · ~Ω×

(
d~r

dt

)

S

+ ~Ω×
(
~Ω× ~r

)

2. Da es ja unser Hauptanliegen ist, die Ableitungen im rotierenden System S zu erhalten, beleben
wir die Punktschreibweise für diese Ableitungen (Newton-Notation) wieder. Wir bezeichnen also

die Ableitung eines beliebigen Vektors ~Q im rotierenden Bezugssystem S mit ~̇Q:

~̇Q :=

(

d ~Q

dt

)

S

⇒ insbesondere: ~̇r :=

(
d~r

dt

)

S

und ~̈r :=

(
d2~r

dt2

)

S

Somit folgt für unsere zweite Ableitung von ~r in S:
(
d2~r

dt2

)

S0

= ~̈r + 2 ~Ω× ~̇r + ~Ω×
(
~Ω× ~r

)
(19)

Jetzt sieht das schon übersichtlicher aus. Nun setzen wir (19) ins Aktionsprinzip (16) ein:

~F = m

(
d2~r

dt2

)

S0

= m ·
(

~̈r + 2 ~Ω × ~̇r + ~Ω×
(
~Ω× ~r

))

= m~̈r + 2m ~Ω × ~̇r +m~Ω×
(
~Ω× ~r

)

Wir wollen nach m~̈r auflösen, denn das ist die scheinbare “resultierende Kraft” im rotierenden Bezugs-
system S. Wir erhalten:

m~̈r = ~F − 2m ~Ω × ~̇r −m~Ω×
(
~Ω× ~r

)
= ~F + 2m~̇r × ~Ω+m

(
~Ω× ~r

)
× ~Ω

Dabei habe ich zweimal ausgenützt, dass ~a×~b = −
(
~b× ~a

)
ist.
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Halten wir dieses Resultat nochmals ganz übersichtlich fest, denn nun haben wir das Aktionsprinzip
für das konstant mit ~Ω rotierende Bezugssystem S gefunden:

Aktionsprinzip im rotierenden System S: m~̈r = ~F + 2m~̇r × ~Ω+m
(
~Ω× ~r

)
× ~Ω (20)

Hier bezeichnet ~F wie üblich die Vektorsumme aller Kräfte, die in einem beliebigen Inertialsystem ermit-
telt wurden. Wie bei früher betrachteten beschleunigten Bezugssystemen ergibt sich, dass die Bewegungs-
gleichung in einem rotierenden Bezugssystem genauso aussieht wie das zweite Newton’sche Gesetz, es
kommen nun aber zwei Zusatzterme auf der Kraftseite der Gleichung hinzu. Der erste dieser Terme wird
als Coriolis-Kraft bezeichnet (benannt nach dem französischen Physiker Gaspard Gustave de Coriolis,
1792 – 1843, der sie als Erster erklärte):

~FCor = 2m~̇r × ~Ω . (21)

Der zweite dieser Zusatzterme ist die sogenannte Zentrifugalkraft

~FZfug = m
(
~Ω× ~r

)
× ~Ω . (22)

An dieser Stelle ist zunächst wichtig, dass wir das Newton’sche Aktionsprinzip also auch in rotierenden
(d.h. nicht-inertialen) Bezugssystemen verwenden können, solange wir nicht vergessen, immer die beiden
“fiktiven” Kräfte (man spricht von Scheinkräften) zu der für ein Inertialsystem berechneten Gesamtkraft
~F hinzuzufügen. In einem rotierenden Bezugssystem gilt also kurz also:

Aktionsprinzip im rotierenden System S: m~̈r = ~F + ~FCor + ~FZfug (23)

7 Die Zentrifugalkraft

Um das Aktionsprinzip in einem rotierenden Bezugssystem anwenden zu können, müssen wir – wie
gerade gesehen – zwei Scheinkräfte einführen, die Zentrifugal- und die Coriolis-Kraft. Bis zu einem
gewissen Grad können wir die beiden Kräfte separat behandeln. Insbesondere ist die Coriolis-Kraft auf
einen Körper proportional zu dessen Geschwindigkeit ~v = ~̇r relativ zum rotierenden Bezugssystem S.
Daher ist ~FCor für einen in S ruhenden Körper null, und sie ist vernachlässigbar, wenn der Körper sich
im rotierenden Bezugssystem nur langsam bewegt.

Im Folgenden werden wir uns hauptsächlich mit einem rotierenden erdfesten Bezugssystem befassen,
für das wir die relative Bedeutsamkeit der beiden Scheinkräfte leicht abschätzen können. Weil in beiden
Kräften Vektorprodukte vorkommen, hängen sie zwar von den Richtungen der jeweiligen Vektoren ab,
doch für eine Abschätzung der Größenordnung reichen die Annahmen

FCor ≃ mvΩ und FZfug ≃ mrΩ2

Darin ist v die Geschwindigkeit des Körpers relativ zum rotierenden erdfesten System, also die übliche
Geschwindigkeit, wie wir sie z.B. auf der Erdoberfläche wahrnehmen. Daher gilt:

FCor

FZfug
≃

mvΩ

mrΩ2
=

v

rΩ
≃

v

RΩ
≃

v

V
(24)

Hier habe ich für die Variable r den Erdradius R eingesetzt. (Mit dem Ursprung im Erdmittelpunkt gilt
für Objekte nahe der Erdoberfläche r ≃ R.) Am Schluss habe ich RΩ durch V ersetzt, d.h. durch die
Geschwindigkeit eines Punkts auf dem Äquator, wenn die Erde mit der Winkelgeschwindigkeit ~Ω rotiert.
Da V bei etwa 460 m

s liegt, zeigt obiges Verhältnis, dass man für Objekte mit v < 100 m
s in erster guter

Näherung die Coriolis-Kraft vernachlässigen kann.4 Die Zentrifugalkraft ist nach (22) gegeben durch

~FZfug = m
(
~Ω× ~r

)
× ~Ω .

4Wie wir später sehen werden, hat die Coriolis-Kraft allerdings auch für v < 100
m
s

nennenswerte Auswirkungen (bei-
spielsweise beim Foucault’schen Pendel). Dennoch ist natürlich richtig, dass Fcor im Vergleich zu FZfug klein ist. Daher
scheint es sinnvoll, die Coriolis-Kraft in erster Näherung zu vernachlässigen.

8



Anhand der obigen Abbildung können wir uns klarmachen, wie das aussieht. Wir sehen einen Körper
auf der Erdoberfläche bei einer Komplementbreite θ. Die Erddrehung trägt den Körper entlang eines
Breitenkreises, und der Vektor ~v = ~Ω×~r (also die Bahngeschwindigkeit dieser Kreisbewegung, beobachtet
im Inertialsystem S0) ist tangential zu diesem Kreis. Daher zeigt der Vektor

(
~Ω×~r

)
×~Ω von der Drehachse

radial nach außen in die Richtung von ~̺ (mit Einheitsvektor ~e̺). Den Betrag von
(
~Ω×~r

)
× ~Ω bestimmt

man leicht zu Ω2r sin θ = Ω2̺. Damit gilt:

~FZfug = mΩ2̺ · ~e̺ = mΩ2 · ~̺ mit ~̺ = ̺ · ~e̺ (25)

8 Die Coriolis-Kraft

In (21) steht die Ableitung ~̇r für die Veränderungsrate des im rotierenden System S gemessenen Orts-
vektors ~r, also für die Geschwindigkeit ~v des Körpers im System S:

~v = ~̇r = Geschwindigkeit des Körpers im rotierenden System S (26)

Nur wenn sich der Körper in S bewegt und somit ~v 6= 0 ist, entsteht die Coriolis-Kraft ~FCor, also eine
Scheinkraft, die wir berücksichtigen müssen, wenn wir das Aktionsprinzip in S anwenden wollen:

~FCor = 2m~̇r × ~Ω = 2m~v × ~Ω . (27)

Der Betrag der Coriolis-Kraft

Die Stärke einer Coriolis-Kraft hängt sowohl von den Beträgen von ~v und ~Ω, als auch von deren relativer
Orientierung ab. Für die rotierende Erde haben wir in (8) gesehen, dass Ω ≈ 7.3 · 10−5 rad

s beträgt.
Für einen Körper mit v ≈ 50 m

s (entsprechend einem schnellen Tennisball) ergibt sich für die maximale

Beschleunigung aufgrund der Coriolis-Kraft (das ist der Fall für ~v senkrecht zu ~Ω)

amax = 2vΩ ≈ 2 · 7.3 · 10−5 rad

s
· 50

m

s
= 0.0073

m

s2
. (28)

Verglichen mit der Gravitationsbeschleunigung von 9.81 m
s2

ist das ein sehr kleiner Wert, allerdings durch-
aus messbar, wenn man den Aufwand betreiben will. Doch etliche Geschosse wie Raketen oder lang-
reichweitige Granaten bewegen sich deutlich schneller als 50 m

s , und dann ist die Coriolis-Kraft für sie
entsprechend bedeutsamer. Außerdem gibt es, wie wir sehen werden, Systeme wie das Foucault’sche
Pendel, für die die Coriolis-Kraft zwar klein ist, aber über einen langen Zeitraum wirkt und damit eine
große Wirkung erzielen kann.
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Die Richtung der Coriolis-Kraft

Die Coriolis-Kraft 2m~v × ~Ω wirkt aufgrund des Vektorproduktes immer senkrecht zur Geschwindigkeit
~v des bewegten Objekts.5 Ihre Richtung wird durch die Drei-Finger-Regel (3FR) der rechten Hand
bestimmt. In der Abbildung oben sehen wir von oben auf einen horizontalen Drehtisch, der entgegen
dem Uhrzeigersinn relativ zum Labor rotiert. Die Winkelgeschwindigkeit ~Ω zeigt senkrecht nach oben (in
der Abbildung aus der Zeichenebene heraus in unsere Richtung). Wenn wir ein Objekt betrachten, das
sich rollend oder gleitend auf dem Drehtisch bewegen kann, sieht man leicht, dass die Coriolis-Kraft un-
abhängig von Ort und Geschwindigkeit des Objekts dessen Geschwindigkeitsrichtung nach rechts ablenken
will. Entsprechend gibt es durch die Coriolis-Kraft eine Ablenkung nach links, wenn wir den Drehtisch im
Uhrzeigersinn rotieren lassen. (Ob das Objekt auch tatsächlich in die angegebenen Richtungen abgelenkt
wird, hängt natürlich davon ab, ob weitere Kräfte wirken und wie stark sie sind.)

Wir können uns vorstellen, dass die Abbildung oben die Nordhalbkugel der Erde zeigt, gesehen von
einem Punkt oberhalb des Nordpols. (Da die Erde sich nach Osten dreht, ist die Winkelgeschwindig-
keit genauso gerichtet wie in der Abbildung dargestellt.) Damit kommen wir zu dem Schluss, dass die
Coriolis-Kraft aufgrund der Erddrehung sich bewegende Körper auf der Nordhalbkugel nach rechts (und
auf der Südhalbkugel entsprechend nach links) ablenken will.6 Dieser Effekt spielt für langreichweitige
Geschosse eine wichtige Rolle. Man muss daher auf der Nordhalbkugel links neben das Ziel zielen, ent-
sprechend rechts neben das Ziel auf der Südhalbkugel. Eine wichtiges Beispiel aus der Meteorologie sind
die tropischen Wirbelsturme. Sie entstehen, wenn die Luft außerhalb eines Tiefdruckgebiets sich schnell
nach innen bewegt. Wegen des Coriolis-Effekts wird die strömende Luft, wie in der nächsten Abbildung
gezeigt, nach rechts abgelenkt und beginnt dann entgegen dem Uhrzeigersinn zu zirkulieren (das gilt
für die Nordhalbkugel; auf der Südhalbkugel zirkuliert die Luftströmung im Uhrzeigersinn). Wenn dies
genügend heftig geschieht, entsteht ein Wirbelsturm, der je nach Region als Zyklon, Taifun oder Hurrikan
bezeichnet wird.

Nochmals zur Klarstellung: Sowohl die Coriolis-, als auch die Zentrifugalkraft sind im Kern kinema-
tische Effekte, die nur deshalb auftreten, weil wir auf der Verwendung eines rotierenden Bezugssystems
bestehen. Wie Anwendungsbeispiele zeigen, ist es in einigen einfachen Fällen aber leichter (und genauso
instruktiv), die Bewegung in einem Inertialsystem zu untersuchen und dann die Ergebnisse auf ein rotie-
rendes System zu transformieren. Im Normalfall allerdings ist die Transformation zwischen zwei Bezugs-
systemen so kompliziert, dass es in der Regel doch leichter ist, die ganze Zeit über in einem rotierenden
Bezugssystem zu arbeiten und die Coriolis- und die Zentrifugalkraft als Scheinkräfte hinzunehmen.

5Damit hat die Coriolis-Kraft eine gewisse Vergleichbarkeit oder Verwandtschaft zur Lorentzkraft ~FL auf ein geladenes
Teilchen mit Ladung q in einem Magnetfeld der Flussdichte ~B. Dort gilt nämlich: ~FL = q

(

~v ×
~B
)

.
6Anders als ein Drehtisch ist die Erde allerdings dreidimensional, und dadurch ist der Coriolis-Effekt real etwas kompli-

zierter als in dieser vereinfachenden Aussage behauptet. Dennoch ist die obige Aussage für Objekte, die sich parallel zur
Erdoberfläche bewegen, und für flach fliegende Geschosse gewiss richtig.
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9 Freier Fall und Coriolis-Kraft

Betrachten wir nun die Auswirkungen der Coriolis-Kraft auf einen Körper im freien Fall, also auf einen
Körper, der im Vakuum nahe einem Punkt ~R auf der Erdoberfläche fällt. Dabei müssen wir korrekterweise
Zentrifugalkraft und Coriolis-Kraft berücksichtigen. Die Bewegungsgleichung ist also

m~̈r = m~g0 + ~FZfug + ~FCor . (29)

Hierin ist m~g0 die “wahre” Gewichtskraft der Erde auf den Körper (gemäss dem Newton’schen Gravita-

tionsgesetz). Der Ortsfaktor ~g0 dieser Massenanziehung zeigt Richtung Erdmittelpunkt. Da wir uns an
der Erdoberfläche befinden, schreiben wir für die Zentrifugalkraft

~FZfug = m
(
~Ω× ~R

)
× ~Ω (30)

Kehren wir nun zur Bewegungsgleichung (29) zurück. Da uns vor allem der Einfluss der Coriolis-Kraft auf
den freien Fall interessiert, können wir die ersten beiden Terme zu einem neuen Term m~g zusammenfas-
sen. Dabei ist ~g die beobachtete Fallbeschleunigung für einen Körper, der am Ort ~R aus dem Ruhezustand
fallen gelassen wird. Aufgrund der Zentrifugalbeschleunigung ist die korrigierte Fallbeschleunigung ~g z.B.
in Zürich punkto Betrag minimal kleiner als g0. Ihre Richtung geht immer noch Richtung Erdboden,
allerdings mit einer ganz kleinen Abweichung gegen Süden. Wenn wir für ~FCor dann 2m~v× ~Ω einsetzen
und den Faktor m kürzen, erhalten wir:

m~̈r = m~g + 2m~v × ~Ω ⇔ ~̈r = ~g + 2 ~̇r × ~Ω (31)

In dieser Gleichung taucht an keiner Stelle der Ort ~r auf, sondern nur dessen Ableitungen ~̇r und ~̈r.
Die Gleichung ändert sich also nicht, wenn man den Ursprung verschiebt (denn eine Verschiebung des
Ursprungs bewirkt nur eine zusätzliche additive Konstante zu ~r, die beim Differenzieren herausfällt).
Dementsprechend können wir nun unseren Koordinatenursprung auf die Erdoberfläche an den Ort ~R

legen. Unser lokales Koordinatensystem soll am Ort ~R auf der Erdoberfläche eine x-Achse nach Osten,
eine y-Achse nach Norden und eine z-Achse nach oben – präziser: entgegengesetzt zum Ortsfaktor ~g
haben. Der Ortsvektor ~r bezieht sich nun auf dieses Koordinatensystem. Mit dieser Wahl der Achsen
lässt sich die Bewegungsgleichung in ihre drei Komponenten zerlegen. Die Komponenten von ~̇r, ~Ω und
~g lauten

~̇r =





ẋ

ẏ

ż



 , ~Ω =





0
Ω sin θ
Ωcos θ



 und ~g =





0
0
−g



 (32)

und wir erhalten für das Vektorprodukt ~̇r × ~Ω:

~̇r × ~Ω =





ẏΩcos θ − żΩ sin θ
−ẋΩcos θ
ẋΩ sin θ



 . (33)
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Damit lässt sich die Bewegungsgleichung (31) in die folgenden drei Gleichungen zerlegen:

ẋ = 2Ω
(
ẏ cos θ − ẋ sin θ

)
ẏ = −2Ω ẋ cos θ ż = −g +Ω ẋ sin θ . (34)

Wir lösen diese drei Gleichungen durch mehrere aufeinanderfolgende Näherungen, die von der Kleinheit
von Ω Gebrauch machen. Zunächst erhalten wir, weil Ω sehr klein ist, eine akzeptable Anfangsnäherung,
wenn wir Ω komplett ignorieren. In dieser Näherung reduzieren sich die Gleichungen auf:

ẋ = 0 ẏ = 0 ż = −g . (35)

Dies sind die Gleichungen für den freien Fall, wie man sie in jedem Einführungskurs zur Physik löst. Wenn
man einen ruhenden Körper von einem Punkt mit x = y = 0 und z = h fallen lässt, müssen nach den
ersten beiden Gleichungen ẋ, ẏ, x und y, allesamt null bleiben. Aus der letzten Gleichung folgt ż = −gt

und z = h− 1
2 gt

2. Unsere Näherungslösung ist also

x = 0 y = 0 z = h−
1

2
gt2 (36)

d.h., der Körper fällt mit konstanter Beschleunigung g vertikal nach unten. Diese Näherung wird manch-
mal als Näherung nullter Ordnung bezeichnet, weil sie nur die nullte Potenz von Ω berücksichtigt (d.h.
von Ω unabhängig ist). Es handelt sich bekanntermaßen um eine sehr gute Näherung, doch sie zeigt
keinerlei Auswirkungen der Coriolis-Kraft.

Für die nächste Näherung argumentieren wir folgendermaßen: Die Terme in (34), die Ω enthalten,
sind alle klein. Daher können wir ruhig diese Terme mithilfe der Näherung nullter Ordnung für x, y und
z berechnen. Setzen wir (36) in die rechte Seite von (34) ein, so erhalten wir

ẍ = 2Ω gt sin θ ÿ = 0 z̈ = −g . (37)

Die letzten beiden Terme sind genau dieselben wie in der Näherung nullter Ordnung, doch die Gleichung
für ẍ ist neu. Man kann sie leicht integrieren und erhält:

x =
1

3
Ω gt3 sin θ (38)

y und z sind dieselben wie in der Näherung nullter Ordnung (36). Dieses Ergebnis wird nun als Näherung
erster Ordnung bezeichnet (weil sie die erste Potenz von Ω berücksichtigt). Diesen Prozess könnten wir
wiederholen und eine Näherung zweiter Ordnung usw. herleiten, doch die Näherung erster Ordnung ist
für unsere Zwecke gut genug.

Bemerkenswert an der Lösung (38) ist, dass ein frei fallender Körper nicht schnurgerade nach unten
fällt: Die Coriolis-Kraft krümmt die Bahn leicht nach Osten (in die positive x-Richtung). Um eine Ahnung
von der Größenordnung dieses Effekts zu bekommen, betrachten wir einen Körper, der einen 100m tiefen
senkrechten Schacht am Äquator hinunterfällt, und berechnen die Ablenkung, die er dann beim Aufprall
am Boden erlährt. Die Zeit, die der Körper bis zum Aufprall benötigt, wird durch die letzte Gleichung in

(36) zu t =
√

2h
g bestimmt, und (38) gibt die östliche Ablenkung an. Mit θ = 90◦ und g ≈ 10 m

s2
ergibt

sich:

x =
1

3
Ω g

(
2h

g

) 3
2

sin θ ≈
1

3
7.3 · 10−5 rad

s
· 10

m

s2
·

(
2 · 100m

10 m
s2

)1.5

· sin 90◦ ≈ 2.2 cm

Das ist zwar eine kleine Ablenkung, doch sie ist beobachtbar. Eine kleine Ablenkung nach Osten wurde
schon von Newton vorhergesagt und auch von seinem Rivalen Robert Hooke (1635 – 1703) bestätigt,
doch ließ sie sich erst nachvollziehbar erklären, als man den Coriolis-Effekt verstanden hatte.
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10 Das Foucault’sche Pendel

Als eine augenfällige Anwendung des
Coriolis-Effekts betrachten wir nun das
Foucault’sche Pendel, benannt nach
seinem Erfinder, dem französischen
Physiker Jean Bernard Léon Foucault

(1819 – 1869). Ein solches Pendel ist in
vielen naturwissenschaftlichen Museen
und Hochschulen auf der ganzen Welt
zu sehen (z.B. im Hauptturm des Deut-
schen Museums in München, vgl. Bild
rechts).

Das Foucault’sche Pendel besteht
aus einem sehr schweren Pendelkörper
der Masse m, der an einem langen
dünnen Draht von einer hohen Decke
hängt. In dieser Anordnung schwingt
das Pendel eine sehr lange Zeit frei und
kann sich sowohl in Ost-West- als auch in Nord-Süd-Richtung bewegen. In einem Inertialsystem be-
trachtet, wirken nur zwei Kräfte auf den Pendelkörper, nämlich die Zugkraft ~FZug im Draht und die
Gewichtskraft mgo. Im rotierenden, mit der Erde verbundenen Bezugssystem gibt es außerdem noch die
Zentrifugal- und die Coriolis-Kraft. Die Bewegungsgleichung im erdfesten Bezugssystem ist

m~̈r = ~FZug +m~g0 +m
(
~Ω× ~r

)
× ~Ω+ 2m~̇r × ~Ω (39)

Genau wie im vorigen Abschnitt lassen sich der zweite und dritte Term auf der rechten Seite zu m~g

zusammenfassen (dabei ist ~g die beobachtete Fallbeschleunigung). Die Bewegungsgleichung wird dann
zu

m~̈r = ~FZug +m~g + 2m~̇r × ~Ω (40)

Wir können nun unsere Achsen wie im vorigen Abschnitt wählen, also mit der x-Achse in Ostrichtung,
der y-Achse in Nordrichtung und der z-Achse vertikal nach oben (Richtung von −~g). Das Pendel sieht
dann aus wie folgt aus:
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Ich beschränke unsere Diskussion auf den Fall kleiner Auslenkungen, sodass der Winkel β zwischen
dem Pendel und der Vertikalen immer sehr klein ist. Daher sind zwei vereinfachende Näherungen zulässig:
Erstens wird der Betrag der z-Komponente der Zugkraft ~FZug gut durch den Betrag der Zugkraft ins-
gesamt genähert, d.h. FZug,z = FZug cosβ ≈ FZug. Zweitens ist leicht zu erkennen, dass für kleine
Schwingungen gilt: FZug,z ≈ mg. 14 Mit diesen beiden Näherungen zusammen ergibt sich

FZug ≈ m · g (41)

Nun müssen wir die x- und die y-Komponente der Bewegungsgleichung (40) untersuchen. Dazu müssen
wir die x- und die y-Komponente von ~FZug ermitteln. Beim Blick auf die vorige Abbildung erkennen wir,

dass wegen der Ähnlichkeit der Dreiecke für die Kraftbeträge gilt:
FZug,x

FZug
= x

L . Ebenso gilt:
FZug,y

FZug
= y

L .

Kombinieren wir das mit (41) und berücksichtigen wir, dass es sich dabei um rücktreibende Kräfte
handelt (~FZug,x und ~FZug,y wirken stets in Richtung O), so folgt:

FZug,x = −
mgx

L
und FZug,y = −

mgy

L
(42)

Die x- und die y-Komponente von ~g sind natürlich null, und die Komponenten von ~̇r × ~Ω sind durch
(33) gegeben. Wenn wir dies alles in (40) einsetzen, erhalten wir, nachdem wir den Faktor m gekürzt
und einen Term mit ż entfernt haben (er ist für kleine Schwingungen gegen ẋ und ẏ vernachlässigbar):

ẍ = − gx
L + 2ẏΩcos θ

ÿ = − gy
L − 2ẋΩcos θ

}

(43)

Hier bezeichnet θ wie üblich die Komplementbreite des Pendelstandorts. Der Faktor g
L ist gerade ω2

0 ,
also das Quadrat der Eigenfrequenz ω0 des Pendels, und Ωcos θ ist gerade Ωz, also die z-Komponente
der Winkelgeschwindigkeit der Erde. Damit lassen sich diese beiden Gleichungen umformen zu

ẍ− 2Ωz ẏ + ω2
0x = 0

ÿ + 2Ωzẋ+ ω2
0y = 0

}

(44)

Wir können die gekoppelten Gleichungen (44) elegant lösen, indem wir eine komplexe Zahl

η = x+ iy (45)

definieren und uns ins Gedächtnis rufen, dass diese komplexe Zahl dieselben Informationen enthält wie
der Ort in der x-y-Ebene – eine Darstellung von η in der komplexen Ebene ist auch ein Blick von oben
auf die Projektion des Pendelorts (x, y) in der x-y-Ebene.

Wenn wir die zweite Gleichung aus (44) mit i multiplizieren und dann zur ersten addieren, erhalten
wir eine einzige Differentialgleichung:

η̈ + 2iΩz η̇ + ω2
0η = 0 (46)

Dies ist eine lineare, homogene Differentialgleichung zweiter Ordnung für η(t) und hat daher zwei un-
abhängige Lösungen. Wenn wir also zwei unabhängige Lösungen finden können, ist die allgemeine Lösung
eine Linearkombination dieser beiden. Wie so oft lassen sich zwei unabhängige Lösungen durch “inspi-
riertes Raten” finden: Wir vermuten, dass es für ein bestimmtes konstantes α eine Lösung der Form

η(t) = eiαt mit η̇ = iαeiαt = iαη(t) und η̈ = (iα)2eiαt = −α2η(t) (47)

gibt. Setzen wir dies in (46) ein, erkennen wir, dass (47) dann und nur dann eine Lösung ist, wenn gilt

α2 − 2Ωzα− ω2
0 = 0 resp. α = Ωz ±

√

Ω2
z + ω2

0 ≈ Ωz ± ω0
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Das letzte Ungefährgleich-Zeichen ist eine extrem gute Näherung, da die Drehgeschwindigkeit Ω der
Erde sehr viel kleiner ist als ω0 des Pendels. Damit haben wir die beiden erforderlichen unabhängigen
Lösungen gefunden und als allgemeine Lösung der Bewegungsgleichung (46) ergibt sich

η(t) = e−i Ωzt
(
C1e

iω0t + C2e
−iω0t

)
. (48)

Um eine Vorstellung davon zu gewinnen, wie die Lösung aussieht, müssen wir die beiden Konstanten C1

und C2 durch Angabe der Anfangsbedingungen festlegen. Nehmen wir an, dass das Pendel zur Zeit t = 0
in die x-Richtung (ostwärts) zu einer Position x = A und y = 0 ausgelenkt und dann aus dem Stillstand
losgelassen wurde vx,0 = vy,0 = 0). Mit diesen Anfangsbedingungen lässt sich leicht überprüfen, dass
C1 = C2 = A

2 gilt, und unsere Lösung wird zu

η(t) = Ae−i Ωzt cosω0t . (49)

Für t = 0 ist der komplexe Exponentialfaktor gleich eins, und es ist x = A und y = 0. Wegen Ωz ≪ ω0

vollführt der Kosinusfaktor viele Schwingungen, bevor der Exponentialfaktor merklich von eins abweicht.
Daraus folgt, dass x(t) anfangs mit der Kreisfrequenz ω0 zwischen ±A schwingt, während y dicht bei
null bleibt. Mit anderen Worten: Anfangs schwingt das Pendel in harmonischer Schwingung entlang der
x-Achse, so wie in folgender Abbildung dargestellt.

Nach einiger Zeit ändert sich der komplexe Exponentialfaktor e−i Ωzt jedoch merklich, wodurch die
komplexe Zahl η = x+ iy sich um den Winkel Ωzt dreht. Auf der Nordhalbkugel ist Ωz positiv, d.h. die
Zahl x+iy schwingt zwar (wegen des Faktors cosω0 t) sinusförmig, aber zusammen mit einer Rotation im
Uhrzeigersinn. Die Schwingungsebene des Pendels rotiert also mit der Winkelgeschwindigkeit Ωz langsam
im Uhrzeigersinn. Auf der Südhalbkugel, wo Ωz negativ ist, verläuft die entsprechende Rotation entgegen
dem Uhrzeigersinn.

Hängt man ein Foucault’sches Pendel bei der Komplementbreite θ auf (geografische Breite −θ), dann
rotiert die Schwingungsebene mit der Geschwindigkeit

Ωz = Ωcos θ (50)

Am Nordpol (θ = 0) gilt Ωz = Ω, die Drehgeschwindigkeit der Pendelebene und die Geschwindig-
keit der Erddrehung stimmen also überein. Dieses Ergebnis ist leicht nachzuvollziehen: Wenn man ein
am Nordpol aufgehängtes Foucault’sches Pendel in einem Inertialsystem (nicht rotierend) betrachtet,
schwingt das Pendel in einer festen Ebene. Im selben Inertialsystem betrachtet, dreht sich jedoch die
Erde (von oben betrachtet) mit der Winkelgeschwindigkeit Ω im Gegenuhrzeigersinn. Natürlich muss
sich dann, im erdfesten (rotierenden) Bezugssystem betrachtet, die Schwingungsebene des Pendels mit
der Winkelgeschwindigkeit Ω im Uhrzeigersinn drehen.
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Für jede andere geografische Breite ist das Ergebnis in einem Inertialsystem viel schwieriger zu
beschreiben, die Drehgeschwindigkeit der Pendelebene lässt sich jedoch mit (50) leicht berechnen. Am
Äquator (θ = 90◦) ist Ωz = 0 und die Pendelebene rotiert nicht. Auf dem 42. Breitengrad (auf der Breite
z.B. von Boston, Chicago oder Rom) beträgt die Komplementbreite θ = 48◦ und es gilt:

Ωz = Ωcos 48◦ ≈
2

3
Ω (51)

Da Ω einer Winkelgeschwindigkeit von 360◦ pro Tag entspricht, ist Ωz ≈ 240◦ pro Tag. Im Lauf von
sechs Stunden – ein Zeitraum, den ein langes, gut aufgehängtes Pendel mit Sicherheit ohne nennenswerte
Dämpfung schwingen kann – wird sich die Schwingungsebene des Pendels um 60◦ drehen – ein leicht zu
beobachtender Effekt. Die Schwingungsebene des Foucault’schen Pendels im Deutschen Museum dreht
sich an einem Tag um etwa 268◦, in sechs Stunden also um ca. 67◦. (München liegt auf der geografischen
Breite 48◦; wir haben also Ωz = Ωcos 42◦ ≈ 3

4 Ω.)

Gaspard Gustave de Coriolis (1792 – 1843) Léon Foucault (1819 – 1868)
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