Methoden der mathematischen Physik

Scheinkrafte in rotierenden Bezugssystemen

1 Die Winkelgeschwindigkeit als Vektor &

Rotierendes System: Auf diesen Seiten betrachten wir die Bewegung von Korpern in Bezugssystemen,
die relativ zu einem Inertialsystem rotieren. Die rotierenden Koordinatenachen sind dabei in der
Regel fest mit einem starren Korper verbunden. Das wichtigste Beispiel ist ein Satz von Achsen,
die fest mit der rotierenden Erde verbunden sind.

Fester Rotationspunkt: Bei der Diskussion von Drehbewegungen starrer Korper gibt es eigentlich nur
zwei Falle, mit denen wir uns beschiftigen miissen: Manchmal rotiert der Kérper um einen Punkt
des Korpers, der (in einem bestimmten Inertialsystem) fest ist; Beispiele dafiir sind ein Rad, das sich
um eine feste Achse dreht, oder ein schwingendes Pendel, das an einem festen Punkt aufgehdngt
ist. Wenn der Kérper nicht um einen festen Punkt rotiert (beispielsweise ein Ball, der durch die
Luft fliegt und sich dabei dreht), gehen wir in zwei Schritten vor: Zunichst bestimmen wir die
Bewegung des Schwerpunkts, und dann untersuchen wir die Drehbewegung des Kérpers in seinem
Schwerpunktsystem. In diesem Schwerpunktsystem ist — der Name sagt es — der Schwerpunkt
fest. Damit geht es also bei der Untersuchung eines rotierenden Korpers auf jeden Fall um einen
Korper, bei dem mindestens ein Punkt effektiv fest ist. Sinnvollerweise legen wir diesen Punkt in
den Ursprung O des Koordinatensystems. Eine Rotationsachse, um die der Korper rotiert, muss
durch O verlaufen.!

Die vektorielle Winkelgeschwindigkeit: Zur vollstandigen Beschreibung der Drehbewegung bendtigen
wir die Angabe der Drehachse und ebenso die Rotationsrate, also die Drehgeschwindigkeit. Die
Richtung der Drehachse kann man mit einem Einheitsvektor €, angeben, die Drehgeschwindigkeit
mit einer Winkelgeschwindigkeit w = i—f. Beispielsweise konnte sich ein Karussell mit w = 10 %‘i
um eine vertikale Achse 4 drehen.

Es ist oftmals bequem, den Einheitsvektor €, mit w zu kombinieren; damit erhilt man den Vektor
der Winkelgeschwindigkeit

W=w- e, (1)
Dieser Vektor @ gibt sowohl die Richtung der Drehach-
se (ndmlich @, d.h. die Richtung von ), als auch die
Drehgeschwindigkeit an (ndmlich w, den Betrag von &@).
Allerdings ist der Vektor & bislang noch nicht eindeutig
definiert. Um beim Beispiel mit dem Karussell von vorhin
zu bleiben: Wenn es sich um eine vertikale Achse dreht,
zeigt der Vektor & dann nach oben oder nach unten?
Wir beseitigen diese Mehrdeutigkeit mithilfe der Rechte-
Hand-Regel (RHR) und wéhlen die Richtung von & so,
dass die Finger der rechten Hand in die Drehrichtung
zeigen, wenn der rechte Daumen in die Richtung von &
weist. Alternativ kann man die Konvention treffen, dass
man den Korper im Uhrzeigersinn rotieren sieht, wenn
man in Richtung von & blickt. Resp. umgekehrt: Kommt .
mir der Vektor & entgegen, so sehe ich den Korper im ROtatIOﬂ
Gegenuhrzeigersinn rotieren.

Diese Aussage ist nur ziemlich schwer zu beweisen, doch sie erscheint so selbstversténdlich, dass ich hoffe, es ist in
Ordnung, wenn wir sie hier auch ohne Beweis akzeptieren.



Verdnderbare Winkelgeschwindigkeit: Es ist wichtig sich klarzumachen, dass sich die Winkelgeschwin-
digkeit & mit der Zeit dndern kann: Wenn sich die Drehgeschwindigkeit verandert, andert sich der
Betrag von &J; wenn sich die Drehachse verdndert, dndert & seine Richtung. Wenn beispielsweise
ein Raumschiff auBer Kontrolle gerdt und zu taumeln beginnt, dndert die Winkelgeschwindigkeit
meist sowohl ihren Betrag als auch ihre Richtung. In einem solchen Fall ist & = &(t) die momen-
tane Winkelgeschwindigkeit zur Zeit t. Es gibt andererseits viele interessante Fille, in denen &
konstant ist (in Betrag und Richtung). Das gilt beispielsweise in hervorragender N&herung fiir die
Winkelgeschwindigkeit der um ihre Achse rotierenden Erde.

2 Kugelkoordinaten

Einen Punkt P im dreidimensionalen Raum R3 beschreiben wir in der Vektorgeometrie normalerweise
durch Angabe eines kartesischen Koordinatentripels resp. durch einen entsprechenden Ortsvektor:

x
P(z,y,z2) resp. =1y
z o

So ahnlich, wie wir in der Ebene zu Polarkoor-
dinaten wechseln konnen, gibt es nun auch im
Raum die Moglichkeit zu sogenannten Kugel-
koordinaten iiberzugehen. Dies empfiehlt sich
typischerweise bei der Untersuchung kugelsym-
metrischer Probleme — die Mathematik des Pro-
blems wird dadurch in der Regel einfacher. We-
gen der Dreidimensionalitat des Raumes werden
immer noch drei Angaben (7,6, ¢) zur Beschrei-
bung eines Ortes 7 benétigt:

e Der Abstand r zum Ursprung,

e der Azimutwinkel ¢ (= Drehwinkel in der z-y-Ebene),

—)

o der Polarwinkel 6 (= Winkel zwischen der z-Achse und dem Ortsvektor 7)

Die kartesischen Koordinaten von P lassen sich relativ leicht aus dessen Kugelkoordinaten berechnen.
So erkennen wir in obiger Grafik zunichst, dass:

z=1rcosf und a=rsinf
Sobald man a kennt, folgt fiir z und y:
T =a cosp =1 sinf cos ¢ und y=asing =r sinf sin ¢

Somit lasst sich fiir den kartesischen Ortsvektor 7 des Punktes P schreiben:

x r cos ¢ sin 6
F=|y | =1 rsin¢gsind (2)
z r cosf

Natiirlich gibt es auch in die Gegenrichtung entsprechende Umrechnungen, aber damit brauchen wir uns
nicht auseinanderzusetzen. Nur die offensichtlichste davon sei hier rasch notiert:

r=|7| =22+ 9%+ 22 (3)



3 Eine niitzliche Beziehung: ¢ = & X 7 :

Es gibt einen wichtigen Zusammenhang zwischen
der Winkelgeschwindigkeit ¢J, mit der sich ein W
Korper dreht, und der linearen Geschwindigkeit Q)
U eines beliebigen Punkts P dieses Kérpers.

Werfen wir beispielsweise einen Blick auf die e o U=WUXT
Erde, die sich mit der Winkelgeschwindigkeit & W
um eine Achse durch ihren (stationir angenom- ¢ i o
menen) Mittelpunkt O dreht. Betrachten wir nun Y SF
einen beliebigen, aber auf der Erdoberfliche fe- \“‘\--__\_ P <
sten Punkt P, beispielsweise unser Schulzim- 5 '"“\--___‘
mer, mit einer gewissen Position 7 relativ zu O. / N

Wir kénnen 7 durch Kugelkoordinaten (7,6, ) % :
angeben, wenn die z-Achse durch den Nordpol :
verlduft. Der Polarwinkel 0 ist dann die sogenann- :
te Komplementbreite oder Kolatitude. (Komple- :
mentbreite deshalb, weil man die iibliche geografi- ’
sche Breite vom Aquator aus zum Pol hin misst.)

Bei der Drehung der Erde um ihre Achse
bewegt sich der Punkt P in 6stlicher Richtung auf seinem Breitenkreis ¢ mit einem Radius von ¢ = rsinf.
Somit ist der Betrag v der Bahngeschwindigkeit ¥ gegeben durch

v =wp =wrsinf (4)

Und wenn wir in der Abbildung oben die Richtungen der verschiedenen Vektoren betrachten, dann
erkennen wir, dass das Vektorprodukt & x 7" gerade den Geschwindigkeitsvektor ¢’ ergibt. Das stimmt
sogar inklusive des durch (4) gegebenen Betrages, denn:

|0 x 7| = |&| - |F7] - sinf = wrsind = v

Es gilt also tatsachlich vektoriell:
v=d X7 (5)

Es ist leicht zu erkennen, dass dieses Ergebnis nicht von der Art des rotierenden Koérpers abhangt; sie
gilt fiir jeden Punkt eines starren Korpers, der mit der Winkelgeschwindigkeit ¢ rotiert, wenn wir den
Ursprung O auf die Drehachse legen.

(5) ist natiirlich eine Verallgemeinerung des Zusammenhangs v = wr, den wir fiir die Bahngeschwin-
digkeit eines Punkts auf dem Umfang eines sich drehenden Rades mit dem Radius r bereits kennen.

Tatsachlich beschreibt (5) die momentane Verdnderungsrate eines beliebigen (!) mit dem starren
Korper verbundenen Vektors aufgrund der durch & beschriebenen Drehbewegung. Es handelt sich dabei
also um die zeitliche Ableitung des Vektors (aufgrund von &)! So ist im Falle des Ortsvektors 7 die
Geschwindigkeit ¢’ eben die zeitliche Verdnderungsrate des Ortes 7, wie wir ja bereits wissen:

dr

% und bei durch & beschriebener Drehbewegung speziell: =& x 7  (6)

allgemein: v =

Das gilt nun aber fiir beliebige Vektoren! Wenn beispielsweise € ein mit dem Korper verbundener Ein-
heitsvektor ist, dann ist seine Anderungsgeschwindigkeit aufgrund der momentan vorhandenen Rotation
@ (betrachtet in einem nicht-rotierenden Bezugssystem) eben durch

de

gegeben. Dieses Ergebnis werden wir in Kiirze anwenden.



—

4 Die Winkelgeschwindigkeit eines rotierenden Bezugssystems: (2

Bei der Notation von Winkelgeschwindigkeiten folgen wir normalerweise folgender Konvention: Wir ver-
wenden den kleinen Buchstaben & fiir die Winkelgeschwindigkeit der Drehbewegung eines Korpers in
irgendeinem Bezugssystem. Und auf der anderen Seite verwenden wir den GroBbuchstaben € fiir die
Winkelgeschwindigkeit eines rotierenden Bezugssystems (= Nicht-Inertialsystem) relativ zu einem Iner-
tialsystem. Diese Unterscheidung ist ganz analog zu der Konvention unserer bisheriger Betrachtungen
von beschleunigten Bezugssystemen, in denen wir die GroBbuchstaben A und V fiir die Beschleunigung
bzw. die Geschwindigkeit eines Nicht-Inertialsystems beziiglich eines Inertialsystems verwendet haben.
In der Praxis ist {) meist eine gegebene, bekannte Winkelgeschwindigkeit, etwa die Winkelgeschwin-
digkeit der Erde, die sich einmal pro Tag um ihre Achse dreht. Im Folgenden werden wir uns nun mit
der Bewegung von Korpern in einem rotierenden Bezugssystem S befassen; gemaB unserer Konvention
bezeichnen wir die Winkelgeschwindigkeit dieses Systems aus der Sicht eines Inertialsystems Sy mit Q.

5 Zeitableitungen in einem rotierenden Bezugssystem

Nun sind wir bereit fiir die Untersuchung der Bewegungsgleichungen fiir einen Korper in einem Be-
zugssystem S, das mit der Winkelgeschwindigkeit Q relativ zu einem Inertialsystem Sy rotiert. Unsere
Schlussfolgerungen gelten aber fiir ein beliebiges rotierendes Bezugssystem; das bei Weitem wichtigste
Beispiel ist ein Bezugssystem, das mit der rotierenden Erde verbunden ist, und dieses Beispiel wollen wir
immer im Hinterkopf behalten. Legen wir deshalb eine kurze Pause ein und berechnen wir die Rotations-
geschwindigkeit der Erde, die sich innerhalb von 24 Stunden einmal um ihre Achse dreht.? Ein fest mit
der Erde verbundenes Bezugssystem hat also die Rotationsgeschwindigkeit

27 rad 5 rad

Q=——""~73-107° —
24 - 3600 7310 S (8)

Nur weil dieser Wert so gering, ist, konnen wir ihn oft ganzlich vernachlassigen. Wir kdnnen aber zeigen,
dass die Drehung der Erde messbare Auswirkungen beispielsweise auf die Bewegung von Geschossen, von
Pendeln und von anderen Systemen hat. Ferner gibt es andere Nicht-Inertialwirkungen (insbesondere die
Gezeiten), die mit der Bahnbewegung von Erde und Mond zusammenhangen. Sie spielen allerdings bei
den Systemen, die wir hier behandeln wollen, eine weit weniger wichtige Rolle, sodass wir sie fiirs Erste
vernachlassigen kénnen.

Wir wollen annehmen, dass die beiden Syste-
me S und Sy — wie in der Abbildung rechts ge-
zeigt — einen gemeinsamen Ursprung O haben. Die
einzige Bewegung von S relativ zu Sy ist also ei-
ne Drehung mit der Winkelgeschwindigkeit Q. Der
gemeinsame Ursprung O konnte beispielsweise der
Erdmittelpunkt sein, S konnte ein Satz von fest
mit der Erde verbundenen Koordinatenachsen sein
und Sy ein Satz von Achsen mit demselben Ur-
sprung, deren Richtungen aber beziiglich weit ent-
fernter Sterne fest sind. Das Bezugssystem S' ist
zwar bequem zu verwenden, ist aber kein Inertial-
system; das System S ist in seiner Verwendung
relativ unbequem, ist aber inertial.

2Genaugenommen ist die Dauer fiir eine Erdrotation ein siderischer Tag, d.h. die Zeit, in der sich die Erde relativ zu
einem weit entfernten Stern einmal um ihre Achse dreht. Dieser Wert ist um einen Faktor 365/366 kiirzer als der Sonnentag,
doch die Differenz ist so klein, dass wir uns hier nicht darum kiimmern miissen.



Betrachten wir nun einen beliebigen Vektor @ Das kann beispielsweise der Geschwindigkeits- oder der
Ortsvektor eines Korpers oder irgendein anderer Vektor von Interesse sein. Unsere erste Aufgabe besteht
darin, die in Sy gemessene zeitliche Anderungsrate von @ mit der entsprechenden in S gemessenen Rate
zu verbinden. Um diese beiden Anderungsraten voneinander zu unterscheiden, benutzen wir zeitweilig
folgende Schreibweise:

(d_é> _ < Anderungsrate des Vektors Q )

dt relativ zum Inertialsystem Sy

und d_@ B Anderungsrate desselben Vektors Q
dt relativ zum rotierenden Bezugssystem S
Um diese beiden Anderungsraten miteinander zu vergleichen, stelle ich den Vektor @ mithilfe der drei
orthogonalen Einheitsvektoren é,, €, und €. dar, die fest mit dem rotierenden System S verbunden sind.
Damit haben wir:

Q = ngx + ngy + ngz (9)
Diese Darstellung ist so gewahlt, dass sie fiir einen Beobachter im Bezugssystem S besonders bequem
ist, weil die Einheitsvektoren €, €, und €, fest mit diesem System verbunden sind. Q,, @, und @ sind
dann die Komponenten von C_j im System S, also beziiglich dieser Einheitsvektoren.
Natiirlich gibt es eine gleiche Darstellung des Vektors @) auch im Inertialsystem Sp:

Q = Qx,ng,O + Qy,Ogy,O + Qz,ng,O (10)

Der einzige Unterschied ist, dass die Vektoren €, €, und €, fiir einen Beobachter in .S fest sind, fiir einen
Beobachter in Sy hingegen rotieren, wahrend es bei den Vektoren &, 0, €, und €, o gerade andersum
ist.

Leiten wir nun die Darstellung (9) in beiden Bezugssystemen nach der Zeit ab. Im Bezugssystem S
sind die Vektoren €, €, und €, konstant und wir erhalten einfach:

dQ dQ, . dQ, . dQ, .
_ 11
(dt) a CT T vy & (11)

Dabei sind dgf, % und dfﬁz die Verdnderungsraten der Vektorkomponenten von Q im System S.
Im Bezugssystem Sy verandern sich hingegen die Vektoren &, €, und €, ebenfalls mit der Zeit. Die

zeitliche Ableitung von (9) ergibt also unter dreifacher Verwendung der Produktregel:

<d_c§> 4Qq . dex dQy _
So

dey dQ. _
— — 12
" S Gt Qe+ Qy +QZ (12)

= (%(any))s = (%(czze;))s

0

0

Nun lassen sich die Ableitungen der Einheitsvektoren leicht mithilfe der “niitzlichen Beziehung" (7)
darstellen. Die Vektoren €, €, und €, sind fest mit dem System S verbunden, das sich mit der Winkel-
geschwindigkeit Q relativ zu Sy dreht. Die Anderungsraten dieser Vektoren sind somit gegeben durch

de,
dt

dé,
dt

—(xé  und —Oxé, (13)

womit wir fiir (12) neu schreiben:

Q-
dt

& +Q.(Axée) (14)

dQ dQ, _. dQ,
(El =1 &+ Qo (A x &) + dty y+ QD x &) +



Dieses Ergebnis stellen wir um und fassen geeignet zusammen:

dQ\  dQ. . S, dQy <L, dQ. 5.
( i )S =% Cr +Qu(Q x €) + g €y + Qy(2 x éy) + g e+ Q.(Q xé)
0

anf — dQ — sz — ~ — = N = N
=g G dty ey + 1 & + Q% (Qu67) + Q x (Quey) +Q x (Q.€2)

- (%?>s

- <%> +Qx (Qm€m+Qy€y+ngz)
S

/

—

Dabei haben wir sowohl (11), als auch (9) verwendet und zudem von der Bilinearitit und der Distribu-
tivitat des Vektorproduktes Gebrauch gemacht.® Somit erhalten wir insgesamt fiir die Ableitung von Q

im System Sy:
d@\  [(d@\ | +_
(E) _<dt> +QxQ (15)
So s

—

Diese wichtige Gleichung verbindet die Ableitung eines beliebigen Vektors ) (gemessen in dem Inertial-
system Sy) mit der entsprechenden Ableitung im rotierenden Bezugssystem S.

6 Das Aktionsprinzip in einem rotierenden Bezugssystem

Nun sind wir soweit, dass wir die Form des 2. Newton'schen Axioms (= Aktionsprinzip) in einem rotieren-
den Bezugssystem S bestimmen konnen. Um die Angelegenheit zu vereinfachen, werden wir annehmen,
dass die Winkelgeschwindigkeit Qvon S beziiglich Sy konstant ist, so wie es (zumindest in hervorragender
N&herung) fiir eine fest mit der rotierenden Erde verbundene Achse gilt.

Betrachten wir nun ein Teilchen der Masse m mit dem Ortsvektor 7. Im Inertialsystem Sy unterliegt
das Teilchen dem Aktionsprinzip in seiner gewohnten Form

d?v
m —_— =
dt? S
Dabei bezeichnet wie iiblich F die resultierende Kraft auf das Teilchen, d.h. die Vektorsumme aller
Krafte, die wir in dem Inertialsystem ermittelt haben. Die Ableitung auf der linken Seite ist natiirlich die

Ableitung, wie sie ein Beobachter im Inertialsystem Sy, bestimmt. Wir kdnnen diese Ableitung nun aber
mithilfe von Gleichung (15) durch die Ableitungen ausdriicken, die im rotierenden System S bestimmt

werden. Zunichst gilt geméss (15):
dr dr ~
— = — Qx7 17
(), = (&) ro w

Fiir die zweite Ableitung schreiben wir zunachst:

(), = (), (5. - (), L&),

M

(16)

_l’_

QXF:|

ST

Hierin ist @ = (g—f)s—i— Q x 7 selber wieder ein Vektor, auf den die durch (15) gegebene Vorschrift fiir

die Ableitung im System Sy, also (%) erneut angewendet wird.

So’

S
+
oy
N—
I
QL
X
S
+
ISTR
X
o

*Bilinearitat: k- (@xb) = (k-@) xb=d x (k-b). Distributivitit: @ x (



Das ist bestimmt ein wenig verwirrlich, wenn man es das erste Mal sieht. Diese Verwirrlichkeit ist
aber vor allem der Notation geschuldet. Daher schreibe ich diese neuerliche Ableitung mittels (15) zuerst
unter Verwendung des Vektors @ auf und setze danach den grésseren Ausdruck fiir @ dafiir zuriick ein:

ey (day _ (da +Q x
dez Jg,  \dt Jg, — \dt Jg
“(@) (), -] e (G oo
dt Jg [\ dt Jg 5

QL

=

t

d27 d(Q x 7) - (dF =
<@>S+<7dt >S+Qx<dt>S+Q><(Q><r)

Dabei habe ich im letzten Schritt einmal mehr die Summenregel fiir die Ableitung und die Distributivitat
des Vektorproduktes verwendet.

Dieses Ergebnis sieht ziemlich uniibersichtlich aus, doch wir kdnnen es ein wenig aufraumen:

—

1. Wir wollen, wie bereits friiher gesagt, von einer konstanten Drehbewegung ausgehen. Dann ist
dgd

= 0 (das gilt in beiden Bezugssystemen). Dadurch vereinfacht sich der zweite Summand von
oben aufgund der auch mit dem Vektorprodukt funktionierenden Produktregel fiir Ableitungen:

d(Q x 7) g - (dF - (dF
X)) (L) ki —ax (L 1
( at )S (dt)sth X<dt>s X<dt>s (18)
———

dt

=0
So schreiben wir insgesamt neu:

4% A7\ s (AR s (dF s s
— ) = (=) +0x (=) +0 O x (Ox7
(a ), = (e ) o (@), o (G )+

27 A
= | — 2-Q Q Qx7
(27) 28+ (3, 5 e

25

Da es ja unser Hauptanliegen ist, die Ableitungen im rotierenden System S zu erhalten, beleben
wir die Punktschreibweise fiir diese Ableitungen (Newton-Notation) wieder. Wir bezeichnen also

die Ableitung eines beliebigen Vektors C_j im rotierenden Bezugssystem S mit Q:

: 5 . " .. 2_’
Q = (%) = insbesondere: 7 := (% >s und 7= <% >s
S
Somit folgt fiir unsere zweite Ableitung von 7 in S:
4’7 - =L R =
<@>50 =7+20x 74+ QX (QXT’)
Jetzt sieht das schon iibersichtlicher aus. Nun setzen wir (19) ins Aktionsprinzip (16) ein:

= d%7 - = L= =,
F:m<ﬁ>50:m-<r+2§2xr+9x(QXT))

—mir4+2mO x i+ mQ x (ﬁxf)

Wir wollen nach m 7 auflésen, denn das ist die scheinbare “resultierende Kraft” im rotierenden Bezugs-
system S. Wir erhalten:

m%:ﬁ—2mﬁx?—mﬁx(QXF):F+2m?xﬁ+m(ﬁxF)xﬁ

Dabei habe ich zweimal ausgeniitzt, dass @ x b= —(gx EL’) i



Halten wir dieses Resultat nochmals ganz iibersichtlich fest, denn nun haben wir das Aktionsprinzip
fiir das konstant mit {2 rotierende Bezugssystem S gefunden:

Aktionsprinzip im rotierenden System S: mi=F+2m7xQ+m (ﬁ X ) X Q (20)

Hier bezeichnet F wie iiblich die Vektorsumme aller Krifte, die in einem beliebigen Inertialsystem ermit-
telt wurden. Wie bei friither betrachteten beschleunigten Bezugssystemen ergibt sich, dass die Bewegungs-
gleichung in einem rotierenden Bezugssystem genauso aussieht wie das zweite Newton'sche Gesetz, es
kommen nun aber zwei Zusatzterme auf der Kraftseite der Gleichung hinzu. Der erste dieser Terme wird
als Coriolis-Kraft bezeichnet (benannt nach dem franzésischen Physiker Gaspard Gustave de Coriolis,
1792 — 1843, der sie als Erster erklarte):

Foor =2mix Q. (21)
Der zweite dieser Zusatzterme ist die sogenannte Zentrifugalkraft
Frpug =m (A7) x Q. (22)

An dieser Stelle ist zundchst wichtig, dass wir das Newton’'sche Aktionsprinzip also auch in rotierenden
(d.h. nicht-inertialen) Bezugssystemen verwenden kénnen, solange wir nicht vergessen, immer die beiden
“fiktiven" Krafte (man spricht von Scheinkriften) zu der fiir ein Inertialsystem berechneten Gesamtkraft
F hinzuzufiigen. In einem rotierenden Bezugssystem gilt also kurz also:

Aktionsprinzip im rotierenden System S: mi=F + Fag + ﬁzfug (23)

7 Die Zentrifugalkraft

Um das Aktionsprinzip in einem rotierenden Bezugssystem anwenden zu konnen, miissen wir — wie
gerade gesehen — zwei Scheinkréfte einfiihren, die Zentrifugal- und die Coriolis-Kraft. Bis zu einem
gewissen Grad konnen wir die beiden Krifte separat behandeln. Insbesondere ist die Coriolis-Kraft auf
einen Kérper proportional zu dessen Geschwindigkeit ¢ = # relativ zum rotierenden Bezugssystem S.
Daher ist ﬁCOr fiir einen in S ruhenden Korper null, und sie ist vernachlassigbar, wenn der Kérper sich
im rotierenden Bezugssystem nur langsam bewegt.

Im Folgenden werden wir uns hauptsachlich mit einem rotierenden erdfesten Bezugssystem befassen,
fiir das wir die relative Bedeutsamkeit der beiden Scheinkrifte leicht abschdtzen konnen. Weil in beiden
Kraften Vektorprodukte vorkommen, hangen sie zwar von den Richtungen der jeweiligen Vektoren ab,
doch fiir eine Abschdtzung der GroBenordnung reichen die Annahmen

Foor = muv Q) und Fzfug ~ mr 0?

Darin ist v die Geschwindigkeit des Korpers relativ zum rotierenden erdfesten System, also die iibliche
Geschwindigkeit, wie wir sie z.B. auf der Erdoberfliche wahrnehmen. Daher gilt:
Foor  mofd v |
Fqug - mr Q2 N rQ

~

(24)

z 2s
<<

Hier habe ich fiir die Variable r den Erdradius R eingesetzt. (Mit dem Ursprung im Erdmittelpunkt gilt
fiir Objekte nahe der Erdoberfliche » ~ R.) Am Schluss habe ich R$) durch V ersetzt, d.h. durch die
Geschwindigkeit eines Punkts auf dem Aquator, wenn die Erde mit der Winkelgeschwindigkeit 1 rotiert.
Da V bei etwa 460 = liegt, zeigt obiges Verhaltnis, dass man fiir Objekte mit v < 100 % in erster guter
Niherung die Coriolis-Kraft vernachlissigen kann.* Die Zentrifugalkraft ist nach (22) gegeben durch

ﬁzfug:m(ﬁxf’)xﬁ

*Wie wir spater sehen werden, hat die Coriolis-Kraft allerdings auch fiir v < 100 2 nennenswerte Auswirkungen (bei-
spielsweise beim Foucault'schen Pendel). Dennoch ist natiirlich richtig, dass Feor im Vergleich zu Fzgug klein ist. Daher
scheint es sinnvoll, die Coriolis-Kraft in erster Naherung zu vernachlassigen.



Anhand der obigen Abbildung kdnnen wir uns klarmachen, wie das aussieht. Wir sehen einen Korper
auf der Erdoberflache bei einer Komplementbreite 6. Die Erddrehung trigt den Korper entlang eines
Breitenkreises, und der Vektor v = ﬁxf(also die Bahngeschwindigkeit dieser Kreisbewegung, beobachtet
im Inertialsystem Sp) ist tangential zu diesem Kreis. Daher zeigt der Vektor (QXF) x 1 von der Drehachse
radial nach auBen in die Richtung von ¢’ (mit Einheitsvektor €,). Den Betrag von (ﬁ X F) x € bestimmt
man leicht zu Q%7 sin @ = Q%p. Damit gilt:

Fupug =mQ% -8 =mQ*- g mit §=0-&, (25)

8 Die Coriolis-Kraft

In (21) steht die Ableitung 7 fiir die Verinderungsrate des im rotierenden System S gemessenen Orts-
vektors 7, also fiir die Geschwindigkeit ' des Kérpers im System S:

7 = 7 = Geschwindigkeit des Kérpers im rotierenden System S (26)

Nur wenn sich der Kérper in S bewegt und somit ¢ # 0 ist, entsteht die Coriolis-Kraft Feor, also eine
Scheinkraft, die wir beriicksichtigen miissen, wenn wir das Aktionsprinzip in .S anwenden wollen:

Foor =2mix Q=2moxQ . (27)

Der Betrag der Coriolis-Kraft

Die Starke einer Coriolis-Kraft hangt sowohl von den Betrdgen von ¢ und (), als auch von deren relativer
Orientierung ab. Fiir die rotierende Erde haben wir in (8) gesehen, dass 2 ~ 7.3 - 107° % betragt.
Fiir einen Kérper mit v ~ 50 & (entsprechend einem schnellen Tennisball) ergibt sich fiir die maximale

Beschleunigung aufgrund der Coriolis-Kraft (das ist der Fall fiir ¥ senkrecht zu ﬁ)

0-° @

(s = 200 ~ 2731 50— = 000735 . (28)

S S

Verglichen mit der Gravitationsbeschleunigung von 9.81 7 ist das ein sehr kleiner Wert, allerdings durch-
aus messbar, wenn man den Aufwand betreiben will. Doch etliche Geschosse wie Raketen oder lang-
reichweitige Granaten bewegen sich deutlich schneller als 50 7, und dann ist die Coriolis-Kraft fiir sie
entsprechend bedeutsamer. AuBerdem gibt es, wie wir sehen werden, Systeme wie das Foucault'sche
Pendel, fiir die die Coriolis-Kraft zwar klein ist, aber {iber einen langen Zeitraum wirkt und damit eine

groBe Wirkung erzielen kann.



Q) und aussere Drehpfeile
= Drehung des Tisches aus Sicht
des Inertialsystems S

B
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Die Richtung der Coriolis-Kraft

Die Coriolis-Kraft 2m@ x @ wirkt aufgrund des Vektorproduktes immer senkrecht zur Geschwindigkeit
7 des bewegten Objekts.” Ihre Richtung wird durch die Drei-Finger-Regel (3FR) der rechten Hand
bestimmt. In der Abbildung oben sehen wir von oben auf einen horizontalen Drehtisch, der entgegen
dem Uhrzeigersinn relativ zum Labor rotiert. Die Winkelgeschwindigkeit O zeigt senkrecht nach oben (in
der Abbildung aus der Zeichenebene heraus in unsere Richtung). Wenn wir ein Objekt betrachten, das
sich rollend oder gleitend auf dem Drehtisch bewegen kann, sieht man leicht, dass die Coriolis-Kraft un-
abhangig von Ort und Geschwindigkeit des Objekts dessen Geschwindigkeitsrichtung nach rechts ablenken
will. Entsprechend gibt es durch die Coriolis-Kraft eine Ablenkung nach links, wenn wir den Drehtisch im
Uhrzeigersinn rotieren lassen. (Ob das Objekt auch tatsichlich in die angegebenen Richtungen abgelenkt
wird, hangt natiirlich davon ab, ob weitere Kréfte wirken und wie stark sie sind.)

Wir kénnen uns vorstellen, dass die Abbildung oben die Nordhalbkugel der Erde zeigt, gesehen von
einem Punkt oberhalb des Nordpols. (Da die Erde sich nach Osten dreht, ist die Winkelgeschwindig-
keit genauso gerichtet wie in der Abbildung dargestellt.) Damit kommen wir zu dem Schluss, dass die
Coriolis-Kraft aufgrund der Erddrehung sich bewegende Korper auf der Nordhalbkugel nach rechts (und
auf der Siidhalbkugel entsprechend nach links) ablenken will.% Dieser Effekt spielt fiir langreichweitige
Geschosse eine wichtige Rolle. Man muss daher auf der Nordhalbkugel links neben das Ziel zielen, ent-
sprechend rechts neben das Ziel auf der Siidhalbkugel. Eine wichtiges Beispiel aus der Meteorologie sind
die tropischen Wirbelsturme. Sie entstehen, wenn die Luft auBerhalb eines Tiefdruckgebiets sich schnell
nach innen bewegt. Wegen des Coriolis-Effekts wird die stromende Luft, wie in der nachsten Abbildung
gezeigt, nach rechts abgelenkt und beginnt dann entgegen dem Uhrzeigersinn zu zirkulieren (das gilt
fir die Nordhalbkugel; auf der Siidhalbkugel zirkuliert die Luftstromung im Uhrzeigersinn). Wenn dies
geniigend heftig geschieht, entsteht ein Wirbelsturm, der je nach Region als Zyklon, Taifun oder Hurrikan
bezeichnet wird.

Nochmals zur Klarstellung: Sowohl die Coriolis-, als auch die Zentrifugalkraft sind im Kern kinema-
tische Effekte, die nur deshalb auftreten, weil wir auf der Verwendung eines rotierenden Bezugssystems
bestehen. Wie Anwendungsbeispiele zeigen, ist es in einigen einfachen Fallen aber leichter (und genauso
instruktiv), die Bewegung in einem Inertialsystem zu untersuchen und dann die Ergebnisse auf ein rotie-
rendes System zu transformieren. Im Normalfall allerdings ist die Transformation zwischen zwei Bezugs-
systemen so kompliziert, dass es in der Regel doch leichter ist, die ganze Zeit {iber in einem rotierenden
Bezugssystem zu arbeiten und die Coriolis- und die Zentrifugalkraft als Scheinkrafte hinzunehmen.

®Damit hat die Coriolis-Kraft eine gewisse Vergleichbarkeit oder Verwandtschaft zur Lorentzkraft Fy, auf ein geladenes
Teilchen mit Ladung g in einem Magnetfeld der Flussdichte B. Dort gilt ndmlich: Fi, = q (17 X é)

®Anders als ein Drehtisch ist die Erde allerdings dreidimensional, und dadurch ist der Coriolis-Effekt real etwas kompli-
zierter als in dieser vereinfachenden Aussage behauptet. Dennoch ist die obige Aussage fiir Objekte, die sich parallel zur
Erdoberflache bewegen, und fiir flach fliegende Geschosse gewiss richtig.
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9 Freier Fall und Coriolis-Kraft

Betrachten wir nun die Auswirkungen der Coriolis-Kraft auf einen Kérper im freien Fall, also auf einen
Korper, der im Vakuum nahe einem Punkt R auf der Erdoberflache fillt. Dabei miissen wir korrekterweise
Zentrifugalkraft und Coriolis-Kraft beriicksichtigen. Die Bewegungsgleichung ist also

m%’: mgo + ﬁzfug + ﬁCor . (29)

Hierin ist mgy die “wahre” Gewichtskraft der Erde auf den Kérper (geméass dem Newton'schen Gravita-
tionsgesetz). Der Ortsfaktor gy dieser Massenanziehung zeigt Richtung Erdmittelpunkt. Da wir uns an
der Erdoberfliche befinden, schreiben wir fiir die Zentrifugalkraft

Frrug =m (A x R) x O (30)

Kehren wir nun zur Bewegungsgleichung (29) zuriick. Da uns vor allem der Einfluss der Coriolis-Kraft auf
den freien Fall interessiert, kdnnen wir die ersten beiden Terme zu einem neuen Term mg zusammenfas-
sen. Dabei ist ¢ die beobachtete Fallbeschleunigung fiir einen Kérper, der am Ort R aus dem Ruhezustand
fallen gelassen wird. Aufgrund der Zentrifugalbeschleunigung ist die korrigierte Fallbeschleunigung g z.B.
in Ziirich punkto Betrag minimal kleiner als gg. lhre Richtung geht immer noch Richtung Erdboden,
allerdings mit einer ganz kleinen Abweichung gegen Siiden. Wenn wir fiir For dann 2m@ x ) einsetzen
und den Faktor m kiirzen, erhalten wir:

mi =mg+2mi x & F=gG+2rxQ (31)

In dieser Gleichung taucht an keiner Stelle der Ort 7 auf, sondern nur dessen Ableitungen 7 und 7.
Die Gleichung andert sich also nicht, wenn man den Ursprung verschiebt (denn eine Verschiebung des
Ursprungs bewirkt nur eine zusatzliche additive Konstante zu 7, die beim Differenzieren herausfillt).
Dementsprechend kdnnen wir nun unseren Koordinatenursprung auf die Erdoberfliche an den Ort R
legen. Unser lokales Koordinatensystem soll am Ort R auf der Erdoberfliche eine z-Achse nach Osten,
eine y-Achse nach Norden und eine z-Achse nach oben — priziser: entgegengesetzt zum Ortsfaktor ¢
haben. Der Ortsvektor 7 bezieht sich nun auf dieses Koordinatensystem. Mit dieser Wahl der Achsen
lasst sich die Bewegungsgleichung in ihre drei Komponenten zerlegen. Die Komponenten von 7 € und
g lauten

' @ - 0 0
F=(yg]| ., Q= Qsin6 und  g=1| 0 (32)
3 Qcosl -9

und wir erhalten fiir das Vektorprodukt 7 x (2

' yQcosf — Z2Qsinb
X Q= —i Qcos b . (33)
zQsind
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Damit lasst sich die Bewegungsgleichung (31) in die folgenden drei Gleichungen zerlegen:
i =2Q(ycosd — isind) y=—2Qicosb i=—g+ Qising . (34)

Wir 16sen diese drei Gleichungen durch mehrere aufeinanderfolgende Naherungen, die von der Kleinheit
von €2 Gebrauch machen. Zun&chst erhalten wir, weil €2 sehr klein ist, eine akzeptable Anfangsnidherung,
wenn wir £ komplett ignorieren. In dieser Naherung reduzieren sich die Gleichungen auf:

i=0 §=0 i=—g . (35)

Dies sind die Gleichungen fiir den freien Fall, wie man sie in jedem Einfiihrungskurs zur Physik 16st. Wenn
man einen ruhenden Kd&rper von einem Punkt mit z = y = 0 und z = h fallen ldsst, miissen nach den
ersten beiden Gleichungen z, ¥, x und y, allesamt null bleiben. Aus der letzten Gleichung folgt z = —gt
und z = h — %th. Unsere Naherungslosung ist also

x=0 y=20 z:h—%th (36)
d.h., der Kérper fallt mit konstanter Beschleunigung g vertikal nach unten. Diese Ndherung wird manch-
mal als Naherung nullter Ordnung bezeichnet, weil sie nur die nullte Potenz von € beriicksichtigt (d.h.
von € unabhingig ist). Es handelt sich bekanntermaBen um eine sehr gute Niherung, doch sie zeigt
keinerlei Auswirkungen der Coriolis-Kraft.
Fiir die ndchste Ndherung argumentieren wir folgendermaBen: Die Terme in (34), die  enthalten,
sind alle klein. Daher kénnen wir ruhig diese Terme mithilfe der Ndherung nullter Ordnung fiir x, y und
z berechnen. Setzen wir (36) in die rechte Seite von (34) ein, so erhalten wir

Z=2Qgtsiné =0 P=—g . (37)

Die letzten beiden Terme sind genau dieselben wie in der Ndherung nullter Ordnung, doch die Gleichung
fiir £ ist neu. Man kann sie leicht integrieren und erhilt:

1
z=3 Qgt®sinf (38)

y und z sind dieselben wie in der N&herung nullter Ordnung (36). Dieses Ergebnis wird nun als Ndherung
erster Ordnung bezeichnet (weil sie die erste Potenz von (2 beriicksichtigt). Diesen Prozess kénnten wir
wiederholen und eine Ndherung zweiter Ordnung usw. herleiten, doch die Ndherung erster Ordnung ist
fiir unsere Zwecke gut genug.

Bemerkenswert an der Losung (38) ist, dass ein frei fallender Kérper nicht schnurgerade nach unten
fallt: Die Coriolis-Kraft kriimmt die Bahn leicht nach Osten (in die positive z-Richtung). Um eine Ahnung
von der GréBenordnung dieses Effekts zu bekommen, betrachten wir einen Kérper, der einen 100 m tiefen
senkrechten Schacht am Aquator hinunterfillt, und berechnen die Ablenkung, die er dann beim Aufprall
am Boden erldhrt. Die Zeit, die der Korper bis zum Aufprall bendtigt, wird durch die letzte Gleichung in

(36) zu t = \/% bestimmt, und (38) gibt die 6stliche Ablenkung an. Mit 6 = 90° und g ~ 10 3 ergibt
sich:

3
1 2h\2 | 1 srad om (2-100m\"°

Das ist zwar eine kleine Ablenkung, doch sie ist beobachtbar. Eine kleine Ablenkung nach Osten wurde
schon von Newton vorhergesagt und auch von seinem Rivalen Robert Hooke (1635 — 1703) bestatigt,
doch lieB sie sich erst nachvollziehbar erklaren, als man den Coriolis-Effekt verstanden hatte.
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10 Das Foucault’sche Pendel

Als eine augenfillige Anwendung des
Coriolis-Effekts betrachten wir nun das
Foucault’sche Pendel, benannt nach
seinem Erfinder, dem franzdsischen
Physiker Jean Bernard Léon Foucault
(1819 — 1869). Ein solches Pendel ist in
vielen naturwissenschaftlichen Museen
und Hochschulen auf der ganzen Welt
zu sehen (z.B. im Hauptturm des Deut-
schen Museums in Miinchen, vgl. Bild
rechts).

Das Foucault'sche Pendel besteht
aus einem sehr schweren Pendelkorper
der Masse m, der an einem langen
diinnen Draht von einer hohen Decke
hangt. In dieser Anordnung schwingt
das Pendel eine sehr lange Zeit frei und
kann sich sowohl in Ost-West- als auch in Nord-Siid-Richtung bewegen. In einem Inertialsystem be-
trachtet, wirken nur zwei Krafte auf den Pendelkorper, ndamlich die Zugkraft ﬁZug im Draht und die
Gewichtskraft mgo. Im rotierenden, mit der Erde verbundenen Bezugssystem gibt es auBerdem noch die
Zentrifugal- und die Coriolis-Kraft. Die Bewegungsgleichung im erdfesten Bezugssystem ist

m = Frug +mgo +m(Q x 7) x G+ 2mi* x (39)

Genau wie im vorigen Abschnitt lassen sich der zweite und dritte Term auf der rechten Seite zu m g
zusammenfassen (dabei ist § die beobachtete Fallbeschleunigung). Die Bewegungsgleichung wird dann
zu

mr = ﬁZug +mg + 2m7 x O (40)
Wir kdnnen nun unsere Achsen wie im vorigen Abschnitt wahlen, also mit der x-Achse in Ostrichtung,
der y-Achse in Nordrichtung und der z-Achse vertikal nach oben (Richtung von —g). Das Pendel sieht
dann aus wie folgt aus:

=~ (oben)
P
Draht (Lénge L)
Fiug
0 ’y y (Norden)
L~ /// ﬁZug,y
FZug,z m
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Ich beschranke unsere Diskussion auf den Fall kleiner Auslenkungen, sodass der Winkel 5 zwischen
dem Pendel und der Vertikalen immer sehr klein ist. Daher sind zwei vereinfachende Ndherungen zul3ssig:
Erstens wird der Betrag der z-Komponente der Zugkraft ﬁzug gut durch den Betrag der Zugkraft ins-
gesamt genahert, d.h. F7,. . = Fzygcos 8 ~ Fz,s. Zweitens ist leicht zu erkennen, dass fiir kleine
Schwingungen gilt: Fz,s . ~ mg. 14 Mit diesen beiden Ndherungen zusammen ergibt sich

Frug =m-g (41)

Nun miissen wir die - und die y-Komponente der Bewegungsgleichung (40) untersuchen. Dazu miissen
wir die - und die y-Komponente von F7,, ermitteln. Beim Blick auf die vorige Abbildung erkennen wir,

dass wegen der Ahnlichkeit der Dreiecke fiir die Kraftbetrige gilt: I;Zz;ug; = . Ebenso gilt: I;?Z;uggy =4
Kombinieren wir das mit (41) und beriicksichtigen wir, dass es sich dabei um riicktreibende Krifte
handelt (F7zug,» und Fzy, , wirken stets in Richtung O), so folgt:

mgx maqy

FZug,x = —T und FZug7y = —T (42)

Die z- und die y-Komponente von ¢ sind natiirlich null, und die Komponenten von 7 x € sind durch
(33) gegeben. Wenn wir dies alles in (40) einsetzen, erhalten wir, nachdem wir den Faktor m gekiirzt
und einen Term mit Z entfernt haben (er ist fiir kleine Schwingungen gegen & und y vernachlassigbar):

F=—24+290cosb
L } (43)

jj=—%—2iQcosd
Hier bezeichnet 6 wie iiblich die Komplementbreite des Pendelstandorts. Der Faktor 4 ist gerade wj,

also das Quadrat der Eigenfrequenz wy des Pendels, und €2 cos 8 ist gerade €., also die z-Komponente
der Winkelgeschwindigkeit der Erde. Damit lassen sich diese beiden Gleichungen umformen zu

F—20.9 +wir =0
L (44)
i+203+wiy=0
Wir kénnen die gekoppelten Gleichungen (44) elegant I6sen, indem wir eine komplexe Zahl
n=ux+iy (45)

definieren und uns ins Gedachtnis rufen, dass diese komplexe Zahl dieselben Informationen enthilt wie
der Ort in der z-y-Ebene — eine Darstellung von 7 in der komplexen Ebene ist auch ein Blick von oben
auf die Projektion des Pendelorts (z,y) in der x-y-Ebene.

Wenn wir die zweite Gleichung aus (44) mit i multiplizieren und dann zur ersten addieren, erhalten
wir eine einzige Differentialgleichung:

i 421 Q0 +win =0 (46)

Dies ist eine lineare, homogene Differentialgleichung zweiter Ordnung fiir n(¢) und hat daher zwei un-
abhangige Losungen. Wenn wir also zwei unabhangige Losungen finden kdnnen, ist die allgemeine Losung
eine Linearkombination dieser beiden. Wie so oft lassen sich zwei unabhingige Lésungen durch “inspi-
riertes Raten” finden: Wir vermuten, dass es fiir ein bestimmtes konstantes « eine Losung der Form

n(t) = et mit I = iael® = ian(t) und i = (i)l = —a?n(t) (47)

gibt. Setzen wir dies in (46) ein, erkennen wir, dass (47) dann und nur dann eine Losung ist, wenn gilt
o —20.a0—-wi=0 resp. a=0,+1/Q2+wd ~Q, +wp
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Das letzte Ungefdhrgleich-Zeichen ist eine extrem gute Ndherung, da die Drehgeschwindigkeit 2 der
Erde sehr viel kleiner ist als wy des Pendels. Damit haben wir die beiden erforderlichen unabhangigen
Lésungen gefunden und als allgemeine Losung der Bewegungsgleichung (46) ergibt sich

n(t) = e*iﬂzt(Cleiwot + Cge*iwot) . (48)

Um eine Vorstellung davon zu gewinnen, wie die Losung aussieht, miissen wir die beiden Konstanten Cy
und Co durch Angabe der Anfangsbedingungen festlegen. Nehmen wir an, dass das Pendel zur Zeit ¢t = 0
in die z-Richtung (ostwarts) zu einer Position x = A und y = 0 ausgelenkt und dann aus dem Stillstand
losgelassen wurde v, 0 = vy,0 = 0). Mit diesen Anfangsbedingungen lasst sich leicht iiberpriifen, dass
Ci=02= % gilt, und unsere Losung wird zu

n(t) = Ae ¥t coswot . (49)

Fiir t = 0 ist der komplexe Exponentialfaktor gleich eins, und es ist z = A und y = 0. Wegen ), < wyg
vollfiihrt der Kosinusfaktor viele Schwingungen, bevor der Exponentialfaktor merklich von eins abweicht.
Daraus folgt, dass z(t) anfangs mit der Kreisfrequenz wy zwischen +A schwingt, wihrend y dicht bei
null bleibt. Mit anderen Worten: Anfangs schwingt das Pendel in harmonischer Schwingung entlang der
x-Achse, so wie in folgender Abbildung dargestellt.

=0 Y Ui (>0

—A +A —A +A

/

Nach einiger Zeit dndert sich der komplexe Exponentialfaktor e 1%%* jedoch merklich, wodurch die

komplexe Zahl n = = + iy sich um den Winkel €.t dreht. Auf der Nordhalbkugel ist 2, positiv, d.h. die
Zahl x4y schwingt zwar (wegen des Faktors cos wy t) sinusférmig, aber zusammen mit einer Rotation im
Uhrzeigersinn. Die Schwingungsebene des Pendels rotiert also mit der Winkelgeschwindigkeit €2, langsam
im Uhrzeigersinn. Auf der Siidhalbkugel, wo €2, negativ ist, verlduft die entsprechende Rotation entgegen
dem Uhrzeigersinn.

Hangt man ein Foucault’sches Pendel bei der Komplementbreite 6 auf (geografische Breite —6), dann
rotiert die Schwingungsebene mit der Geschwindigkeit

Q. =Qcosb (50)

Am Nordpol (6 = 0) gilt 2, = Q, die Drehgeschwindigkeit der Pendelebene und die Geschwindig-
keit der Erddrehung stimmen also iiberein. Dieses Ergebnis ist leicht nachzuvollziehen: Wenn man ein
am Nordpol aufgehdngtes Foucault'sches Pendel in einem Inertialsystem (nicht rotierend) betrachtet,
schwingt das Pendel in einer festen Ebene. Im selben Inertialsystem betrachtet, dreht sich jedoch die
Erde (von oben betrachtet) mit der Winkelgeschwindigkeit €2 im Gegenuhrzeigersinn. Natiirlich muss
sich dann, im erdfesten (rotierenden) Bezugssystem betrachtet, die Schwingungsebene des Pendels mit
der Winkelgeschwindigkeit €2 im Uhrzeigersinn drehen.
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Fiir jede andere geografische Breite ist das Ergebnis in einem Inertialsystem viel schwieriger zu
beschreiben, die Drehgeschwindigkeit der Pendelebene lasst sich jedoch mit (50) leicht berechnen. Am
Aquator (8 = 90°) ist 2, = 0 und die Pendelebene rotiert nicht. Auf dem 42. Breitengrad (auf der Breite
z.B. von Boston, Chicago oder Rom) betragt die Komplementbreite § = 48° und es gilt:

2
Q, = Qcos48° ~ 3 Q (51)

Da Q einer Winkelgeschwindigkeit von 360° pro Tag entspricht, ist €2, ~ 240° pro Tag. Im Lauf von
sechs Stunden — ein Zeitraum, den ein langes, gut aufgehdngtes Pendel mit Sicherheit ohne nennenswerte
Dampfung schwingen kann — wird sich die Schwingungsebene des Pendels um 60° drehen — ein leicht zu
beobachtender Effekt. Die Schwingungsebene des Foucault’schen Pendels im Deutschen Museum dreht
sich an einem Tag um etwa 268°, in sechs Stunden also um ca. 67°. (Miinchen liegt auf der geografischen
Breite 48°; wir haben also 2, = (2 cos 42° ~ %Q)

Gaspard Gustave de Coriolis (1792 — 1843) Léon Foucault (1819 — 1868)
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