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Kapitel 1

Vektoren im R>

1.1 Koordinatensystem und Punkte im Raum

Zur Angabe eines Ortes resp. Punktes im dreidimensionalen Raum R? richten wir ein (kartesi-
sches) Koordinatensystem ein:

i. Einen bestimmten Ort! legen wir als Ursprung (auch Nullpunkt oder Origo) O fest.

ii. In diesen Ursprung legen wir die Nullpunkte dreier senkrecht zueinander stehender Koordina-
tenachsen, die wir als x—, y und z-Achse bezeichnen. Jede Achse ist ein reeller Zahlen-
strahl, auf dem alle reellen Zahlen 2 € R von —oo bis +00 vorhanden sind.

iii. Zu jedem Punkt im Raum gehort ein eindeutiges reelles Zahlentripel P(zp,yp, zp) € R? (vgl.
Abb. 1.1). Wir sagen: Jeder Punkt im dreidimensionalen Raum hat drei reelle Koordinaten.
Daher auch die Kurzschreibweise R? fiir den dreidimensionalen Raum.

Vom Ursprung gelange ich zum Punkt P, indem ich auf der z-Achse bis zur Stelle xp gehe,
dann senkrecht dazu in Richtung der y-Achse yp weit gehe und schliesslich nochmals senkrecht
dazu in Richtung der z-Achse die Distanz zp zuriicklege.

0(0,0,0) -

= Ursprung R ey
= Nullpunkt ok : Plzp, yp, 2p) .-

= Origo L | (ST o ;

Abbildung 1.1: Ein dreidimensionales Koordinatensystem. Punkte sind Koordinatentripel.

In physikalischen Anwendungen entspricht der Ursprung typischerweise dem Aufenthaltsort eines Bezugsobjektes.



1.2 Vektoren als Pfeile bzw. Verschiebungen im R3

Sobald ich mir zwei Punkte P,Q € R? vorgebe, kann ich fragen, wie ich vom einen zum anderen
Punkt gelange.

Die Antwort ist ein Pfeil von P nach @, durch den eine Verschiebung von P nach () beschrieben
wird. Diese Verschiebung bezeichnen wir als Vektor Fé Dabei zeigt das “Vektorpfeilchen” iiber
den beiden Buchstaben an, dass es sich um eine Pfeilverbindung von P nach ) handeln soll. Im
Fachjargon bezeichnet man Verschiebungen auch als Translationen.

Vektorkomponenten

Die durch den Vektor P—Q beschriebene Verschiebung von P nach @ kdnnen wir in drei hintereinander
ausgefiihrte Teilverschiebungen langs der Koordinatenachsen zerlegen.

Beispiel: Seien P(—1,3,0) und Q(3,1,3). In Abb. 1.2 sehen wir die Lage dieser beiden Punkte im
Koordinatensystem und den Vektorpfeil P(, der vom Punkt P zum Punkt @) zeigt.

Um von P nach @ zu gelangen, muss ich folglich +4 Einheitsschritte in z-Richtung, —2
Einheitsschritte in y-Richtung und 43 Einheitsschritte in z-Richtung gehen.

z

A

I~

Q(3,1,3)

\
\
;.U
T
=
=
o
Ny

btrmmm b i
1/&/

Abbildung 1.2: Ein Vektor im R? ist ein Pfeil, der als eine Verschiebung zwischen zwei Punkten
verstanden werden kann. Der Vektor von P nach @ l3sst sich in drei Komponenten parallel zu den
Koordinatenachsen zerlegen.

Die Teilverschiebungen langs der Koordinatenachsen nennt man die Komponenten des Vektors
PQ). Dies fiihrt uns auch direkt zur Komponentenschreibweise fiir Vektoren:

4
PQ=|-2
3

In dieser Komponentenschreibweise notieren wir allgemein fiir einen beliebigen Vektor :

U= | vy (1.1)

Dabei sind v, v, und v, die Vektorkomponenten oder einfach die Komponenten von .



Gleiche Pfeile als Reprasentanten ein- und desselben Vektors

Der Vektor Fé steht fiir die Verschiebung vom Punkt P zum Punkt @, dargestellt durch einen Pfeil
von P nach @. Ein Pfeil mit gleicher Lange und gleicher Richtung kann sich aber auch zwischen
zwei anderen Punkten R und S ergeben, wie dies in Abb. 1.3 gezeigt wird. Wir sagen: Die Pfeile
PQ und RS sind Reprasentanten ein- und desselben Vektors. Die Verschiebung von P nach @
entspricht derjenigen von R nach S. Es handelt sich um den gleichen Vektor:

4
PQ=RS=[-2

3
Q(3.1,3)

Pq

S(5,0,2) P(~1,3,0)

ﬁ\.

R(1,2,-1)
Abbildung 1.3: Zwei Reprasentanten (Pfeile) zum selben Vektor.
Somit ist es auch sinnvoll zu sagen, dass beispielsweise eine Figur oder ein Kdrper um einen

bestimmten Vektor ¥ verschoben wird. Das bedeutet einfach, dass jeder Punkt der Figur resp. des
Korpers mit demselben Pfeil (Richtung und Lénge identisch) verschoben wird (vgl. Abb. 1.4).

Al
>
xr
Abbildung 1.4: Die Verschiebung des Kérpers K um den Vektor ¢. Alle Punkte von K werden separat
um den Vektor ¢/ verschoben.




1.3 Ortsvektoren

Mit dem Ursprung O legen wir im Raum einen ganz bestimmten Punkt als Ausgangspunkt fiir unser
Koordinatensystem fest. Alle weiteren Punkte lassen sich dann erreichen, indem ich sage, wie weit
ich von O aus in z-, in y- und in z-Richtung zu gehen habe (vgl. Abschnitt 1.1).

Folglich wird jeder Punkt P durch einen Vektor OP beschrieben, der mir sagt, wie ich vom
Ursprung O zum Punkt P gelange. Derartige Vektoren nennen wir Ortsvektoren. Der Einfachheit
halber schreiben wir dafiir nur P anstelle von OP.

Die Punktkoordinaten entsprechen den Komponenten des zugehérigen Ortsvektors. So gilt bei-
spielsweise fiir die beiden Punkte P und @ resp. fiir deren Ortsvektoren P und Q (vgl. Abb. 1.5):

B Tp —1 . TQ 3
P=|yp | =1 3 und Q=lwvw | =11
Zp 0 zQ

Damit Iasst sich der Vektor P—Cj von P nach @ durch eine Subtraktion von Ortsvektoren ausdriicken:

. xQ TP\ () [TeQ TP 3—(-1) 4
PQ=Q-P=\yo | —|yp|=|vo—vr | = 1-3 | =1-2
20 zZp 2Q — zp 3—0 3

Bem.: Beim Schritt () sind wir davon ausgegangen, dass die Subtraktion zweier Vektoren kompo-
nentenweise erfolgt, dass also die z-, die y- und die z-Komponenten einzeln voneinander subtrahiert
werden. Das ist tatsidchlich sinnvoll so, wie wir im Kapitel 2 noch genauer sehen werden. Bereits
jetzt wollen wir uns merken:

Vektor zwischen zwei Punkten

Der Vektor Fé vom Punkt P zum Punkt Q) ist die Differenz zwischen dem
Ortsvektor () des Endpunktes und dem Ortsvektor P des Anfangspunktes:

. I'Q—I'p
PQ=Q—-P=|yo—yp (1.2)
2Q — Zp

Dabei erfolgt die Subtraktion der beiden Vektoren komponentenweise.

Abbildung 1.5: Die Ortsvektoren P und Cj fiihren vom Ursprung O zum jeweiligen Punkt. Der Vektor
PQ ist die Differenz der beiden Ortsvektoren.



1.4 Der Betrag |¥| eines Vektors

Die Lange eines Vektors ¥ ist einfach eine Zahl. Wir bezeichnen sie als den Betrag |7| des Vektors.
In der Regel vereinfachen wir uns diese Betragsnotation, indem wir statt || einfach v schreiben. Bei
Vektoren zwischen zwei Punkten, also z.B. bei Fé schreiben wir fiir den Betrag aber eher PQ.

Im R3 ergibt sich der Betrag eines Vektors # durch eine doppelte Anwendung des Satzes von
Pythagoras, wie wir uns sofort am bekannten Beispiel Fé veranschaulichen wollen.

Beispiel: Abb. 1.6 zeigt wieder den Vektor v = 136 Seine Lange entspricht der Lange der Raumdia-
gonale eines Quaders mit gegeniiberliegenden Eckpunkten P und @ und Quaderkanten parallel
zu den Achsen des Koordinatensystems.

Fiir die Lange der Diagonale d der liegenden Seitenfliche erhalten wir:
d> =02 + v, =47+ (=2)> =20
Daraus ergibt sich fiir die Lange der Raumdiagonale resp. fiir den Betrag des Vektors Fé:
PQ° = d? + 2 =vs4u,+vl =42+ (-2°+3=20+9=29 = PQ=v29
~——

—a2

i i i

Abbildung 1.6: Die Berechnung des Vektorbetrags erfolgt durch eine doppelte Anwendung Satzes
von Pythagoras. Die Diagonale der Seitenfliche des

Wir halten allgemein fest:

Berechnung eines Vektorbetrages

Der Betrag |¥| resp. v eines Vektors ¥ ist gegeben durch die Wurzel aus
der Summe iiber die Quadrate der Vektorkomponenten:

T= |y = v=U|=/vi+ v+ 02 (1.3)




Kapitel 2

Elementare Vektoroperationen

2.1 Vektoraddition

Unter der Addition zweier Vektoren @ und b wollen wir die Verschiebung verstehen, die sich ergibt,
wenn wir die zu @ und zu Egehérenden Verschiebungen hintereinander ausfiihren.

In Abb. 2.1 sehen wir das Resultat einer solchen Vektoraddition. Sie ist offensichtlich kom-
mutativ, denn die Reihenfolge der beiden Verschiebungen @ und gspielt fiir den resultierenden
Verschiebungsvektor @ + b keine Rolle:

Kommutativitdt der Vektoraddition: i+b=b+a (2.1)

Abbildung 2.1: Das grafische Verstandnis fiir die Vektorsumme d + b.

Vektoren zu addieren bedeutet also die zu den einzelnen Vektoren gehorenden Pfeile an-
einanderzuhdngen. Das gilt fiir die Summe beliebig vieler Vektoren (vgl. Abb. 2.2).

- Q(7271*2)

Y

Abbildung 2.2: Der Vektor PT ist die Summe aus den Vektoren Fé aé RS und ST.



Die Vektoraddition erfolgt komponentenweise!

Die z-Komponente a, eines Vektors @ sagt uns, um wie viel sich die x-Koordinate bei der durch @
beschriebenen Verschiebung verandert. Fiihren wir die beiden Verschiebungen d und b hintereinander
aus, addieren wir also die beiden Vektoren @ und b, so wird die z-Koordinate zuerst um a., danach
um b, geindert. Insgesamt betrigt die Veranderung somit a, + b,. Analoge Uberlegungen kénnen
wir auch fiir die - und die z-Komponente anstellen.

Wir bemerken also ganz explizit und allgemein:

Ausfiihrung der Vektoraddition

Die Addition von Vektoren erfolgt komponentenweise! D.h., die x-, die
y- und die z-Komponenten werden getrennt voneinander addiert:

o [t ba az + by
a+b=lay | +|by| =1 ay+by (2.2)
a b a;+b;

2.2 Skalare Multiplikation

Ein Vektor @ im R? ist ein Objekt bestehend aus drei Komponenten, also aus drei reellen Zahlen. Im
Gegensatz dazu bezeichnen wir ein Objekt, zu dessen vollstindiger Angabe nur eine einzelne reelle
Zahl k € R notwendig ist, als Skalar.

Nun kann ich ja zum Beispiel sagen, dass ich die durch den Vektor @ beschriebene Verschiebung
gerne sechsmal ausfilhren mochte. Dabei ist die Zahl & = 6 ein Skalar, der zahlt, wie oft, also wie
viel mal hintereinander die Verschiebung durch den Vektor @ erfolgen soll. Ich beschreibe hier also
die Multiplikation des Vektors @ mit dem Skalar & = 6, denn eine solche Multiplikation mit einem
Skalar steht eben stets fiir die Angabe, wie oft ein bestimmtes Objekt aufaddiert werden soll.

Damit ist aber bereits klar, wie diese sogenannte skalare Multiplikation bei Vektoren zu funk-
tionieren hat, denn iiber die Addition wissen wir ja Bescheid:

Ay Ay 6-ay
6-d=a+...+a=\|ay|+...+|ay, | = 6-ay
~—_———
6-mal Gy Ay 6-a,
6-mal

Halten wir das allgemein fest:

Ausfithrung der skalaren Multiplikation

Bei der Multiplikation eines Viektors d mit einem Skalar k € R muss jede
Vektorkomponente einzeln mit dem Skalar k multipliziert werden:

Ay k- ay
k-d=k-|ay| =1|Fk-ay (2.3)
a, k-a,

Offensichtlich kann die Multiplikation eines Vektors mit einem Skalar auf die Multiplikation von zwei
reellen Zahlen innerhalb der Komponenten zuriickgefiihrt werden. Daraus folgt, dass fiir den Skalar
k beliebige reelle Werte eingesetzt werden diirfen, denn wir wissen, dass die Multiplikation damit
problemlos funktioniert.



Liegt ein Vektor @ parallel zu einer bestimmten Gerade, so gilt das auch fiir das Resultat k- a der
skalaren Multiplikation. Das verstehen wir gut, denn die Komponenten werden alle mit demselben
Faktor k& multipliziert. D.h., ihr Verhiltnis, das fiir die Ausrichtung entscheidend ist, wird dadurch
nicht verandert: a, : ay, : a, = (kag) : (kay) : (ka). Fiir k < 0 wechselt der Vektor allerdings seine
Zeigerichtung um 180°.

Abb. zeigt einen Vektor @ und das Resultat einiger Multiplikationen mit verschiedenen k € R.

Abbildung 2.3: Bei der skalaren Multiplikation von @ entsteht ein zu @ paralleler Vektor. Bei der
Multiplikation mit einer negativen Zahl dreht sich allerdings die Zeigerichtung um 180°.

2.3 Einheitsvektoren

Oftmals ist es praktisch eine Richtung durch einen Vektor mit Lange 1 anzugeben. Solche Vektoren
mit Lange 1 nennen wir Einheitsvektoren.

Ist ein Vektor ¢ gegeben, so bezeichnet €, den Einheitsvektor in Richtung von . Ich erhalte €,,
indem ich den Vektor ¥ durch seinen Betrag v = |¢/| dividiere resp. mit dem Kehrwert des Betrages

multipliziere (g =1.7)
v T
Einheitsvektor in Richtung von ¥: €y = 5| = — (2.4)
7] w

2.4 Die Differenz zweier Vektoren

Das Konzept des Nullvektors

Als Nullvektor O bezeichnen wir die Verschiebung “um nichts”. Die Komponenten des Nullvektors
sind alle gleich 0, sodass diesem Vektor keine echte Richtung zugeordnet werden kann. Den Nullvektor
kann ich zu jedem beliebigen Vektor hinzuaddieren, ohne dass sich an diesem etwas verandert:

Definition des Nullvektors O: i+0=a (2.5)

O ist aufgrund dieser Eigenschaft das Nullelement in der Menge aller Vektoren.
Tatsdchlich benutzen wir den Nullvektor eher selten. Er ist aber dennoch ein wichtiges und
hilfreiches Element in der Menge aller Vektoren des R3, z.B. gerade bei der nichsten Uberlegung. . .



Der Gegenvektor eines Vektors
Als Gegenvektor zu einem gegebenen Vektor d@ definieren wir denjenigen Vektor g, fiir den gilt:
Qi+, =0

D.h., der Gegenvektor g, macht die Verschiebung durch @ genau riickgangig. Die Hintereinander-
ausfiihrung (= Summe) von @ und g, soll insgesamt also den Nullvektor ergeben.

Nun wissen wir ja ganz konkret, wie Vektoren addiert werden, namlich komponentenweise! Das
erlaubt uns sofort die Komponenten von g, zu identifizieren:

Qg Ya,x Oy + Ga,x | 0 —Qy
a+go=\ay |+ Gay| =1 a+gay | =0 = Jo= | —ay | =—a
Gy Ya,z 0z + Ja,z 0 —Qy

Zuletzt haben wir verwendet, dass der Faktor (—1), der in jeder Komponente auftritt, vor den Vektor
gezogen werden kann (skalare Multiplikation).

Der Gegenvektor zum Vektor @ ist also einfach das Negative des Vektors a@. D.h., der Gegenvektor
Ja ist gleich lang wie der Vektor @, zeigt aber genau in die Gegenrichtung.

Zur Differenz zweier Vektoren

Frage: Was soll man unter der Differenz a — b zweier Vektoren @ und b verstehen?

Antwort 1: Ist & = @ — b das Resultat der Vektorsubtraktion, so folgt durch Addition von b auf
beiden Gleichungsseiten:
c=a—> = a=b+¢c
Das Resultat der Subtraktion muss also derjenige Vektor ¢ sein, der zusammen mit dem Vektor
b den Vektor @ ergibt. Die linke Darstellung in Abb. 2.4 verdeutlicht diese Aussage.

Wir erkennen: Die Differenz zwischen @ und b ist der Vektor, der von der Pfeilspitze von b
zur Pfeilspitze von @ fiihrt, wenn ich die Pfeile fiir @ und b vom gleichen Punkt aus starten
lasse.

Antwort 2: Die Subtraktion von b kann als Addition des Gegenvektors von b verstanden werden:

i-b=a+(-b)

Die Addition von Yektoren bedeutet das Aneinanderhingen der Vektorpfeile. @ — b ergibt sich
also, indem ich —b an @ hange (vgl. Abb. 2.4 rechts).

Abbildung 2.4: Zweifache Veranschaulichung zur Subtraktion zweier Vektoren.



Die Subtraktion erfolgt komponentenweise

Unsere beiden Antworten auf die Frage nach der Bedeutung der Differenz zweier Vektoren im vorigen
Abschnitt stimmen (zum Gliick resp. natiirlich) miteinander iberein.

Antwort 1 liefert ein besonders anschauliches grafisches Verstandnis fiir @ — b, wihrend uns
Antwort 2 sofort die Berechnung der Komponenten des Resultates dieser Vektorsubtraktion erlaubt,
weil wir ja bereits wissen, wie die Vektoraddition funktioniert:

. . Qg —b, az — by
6—b:a+(—b): ay | + | =by | = | ay — by
az _bz az - bZ

Das wollen wir allgemein festhalten:

Bildung einer Vektordifferenz

Die Differenz zweier Vektoren wird komponentenweise gebildet! D.h.,
die Subtraktion zwischen den z-, den y- und den z-Komponenten wird
getrennt voneinander ausgefiihrt:

. Qg ba: Qg — bx
a—b=\|ay | —[by, ]| = | ay—0by (2.6)
Ay bz Gy — bz

Dieses Resultat hatten wir fiir die Differenz zweier Ortsvektoren in Gleichung (1.2) auf Seite 4 bereits
so festgehalten!

Grafische Veranschaulichung von Vektorsumme und Vektordifferenz

Es ist wirklich wichtig ein gutes Verstandnis resp. ein greifbares Bild fiir die Bedeutung von Addi-
tion und Subtraktion zweier Vektoren zur Verfiigung zu haben. Abb. 2.5 bringt dieses Verstandnis
nochmals auf den Punkt. Vektorsumme und Vektordifferenz stehen fiir die Diagonalen in einem
Parallelogramm, das von einem Eckpunkt aus durch zwei Vektoren @ und gaufgespannt wird.

Ich empfehle sehr, dass du dir diese Grafik als Merkhilfe einpragst. Dabei ist besonders fiir die
Differenz wichtig zu wissen, dass @ — b von der Pfeilspitze von b zur Pfeilspitze von a fiihrt.

______
_____

b

Abbildung 2.5: Summe und Differenz zweier Vektoren auf einen Blick.
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2.5 Mittel- und Schwerpunkte

Mittelpunkt zweier Punkte

An einem dhnlichen Parallelogramm wie demjenigen in Abb. 2.5 verstehen wir unmittelbar, wie sich
der Mittelpunkt M zwischen zwei Punkten P und ) berechnen l3sst. Betrachten wir dazu die linke
Seite in Abb. 2.6.

M liegt offensichtlich auf halbem Weg zur O gegenuberllegenden Parallelogrammecke Der Orts-
vektor dieses Mittelpunktes M entspricht somit der Halfte von P+ Q

P+Q
9

M:

(2.7)
Was wir vom arithmetischen Mittel m = “T”Lb zweier Zahlen a und b her bereits kennen, lasst sich
also auf den Mittelpunkt zweier Punkte P und @ lbertragen. Effektiv wird bei der Mittelpunktbe-
stimmung einfach komponentenweise das arithmetische Mittel berechnet:

:Bp+:BQ
5 = 2
- P
M = ;Q: vrtig (2.8)
zp+zQ
2

Ursprung
0

Abbildung 2.6: Der Ortsvektor M des Mittelpunktes zweier Punkte mit Ortsvektoren P und @

Den Mittelpunkt M zwischen zwei Punkten P und @ erhalten wir gemdss der rechten Seite
von Abb. 2.6 aber auch, indem wir an den Ortsvektor P die Halfte des Vektors P anhidngen.
Uberpriifen wir rechnerisch, dass wir sicher dasselbe Resultat erhalten:

P+Q
2

1~
5@

—

(G-P)=P+

P=_-P+_-P= v

(NN

— — 14~‘—> — 1
M=P+5;PQ=F+ 5

N | —

Dabei haben wir verwendet, dass Fé = Q—ﬁ Ausserdem sind wir stillschweigend davon ausgegan-
gen, dass die skalare Multiplikation und die Vektoraddition resp. -differenz dem Distributivgesetz
gehorchen, dass also fiir einen Skalar k und zwei Vektoren @ und b stets gilt:

k-(@+b)=k-d+k-b und k-(@-b)=k-@a—k-b (2.9)

Davon kdnnten wir uns problemlos iiberzeugen, indem wir @ und bin Komponenten aufschreiben und
die Vektoraddition resp. -differenz und auch die skalare Multiplikation explizit mit diesen Komponen-
ten gemass den Gleichungen (2.2), (2.3) und (2.6) ausfiihren wiirden. Das ist aber eher langweilig
und bringt keine bahnbrechenden Einsichten mit sich, weshalb wir darauf verzichten wollen.
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Streckenaufteilung in ein vorgegebenes Teilstreckenverhiltnis
Wir wollen die Mittelpunktsbestimmung gerade um eine Stufe erweitern. . .
Vorgabe: Es seien P und Q) zwei beliebige Punkte und PQ ihre gerade Verbindungsstrecke.

Frage: Wie ldsst sich PQ in einem bestimmten Zahlenverhiltnis, z.B. 3 : 4, unterteilen?
Anders gefragt: Wenn wir die Ortsvektoren P und @ kennen, wie lautet dann der Ortsvektor
R des Punktes, der die Strecke P(Q im gewiinschten Verhaltnis unterteilt?

Wie wir zu einer Antwort gelangen, soll in einer Ubungsaufgabe iiberlegt werden. Ich gebe hier nur
das allgemeine Resultat wieder.

Aufteilung einer Strecke in einem bestimmten Zahlenverhaltnis

Sind die Endpunkte P und Q einer Strecke PQ) bekannt und soll diese
Strecke in einem bestimmten Zahlenverhiltnis m : n aufgeteilt werden,
so ist der Ortsvektor des Punktes R € P() gegeben durch:

n-ﬁ+m-@_ n - m -

R = = . 2.10
m-+n m-+n + m-+n ( )
Der Ortsvektor R entspricht einer gewichteten Mittelung der beiden

Ortsvektoren P und Q mit Gewichten n und m.

Abb. 2.7 veranschaulicht dieses Resultat. Soll die Strecke PQ im Verhiltnis 3 : 4 unterteilt werden
mit dem grosseren Streckenabschnitt auf der Seite von @), so muss der Punkt P in der Mittelung
das grossere Gewicht erhalten, sodass der Punkt R eben naher bei P zu liegen kommt!

@)

Abbildung 2.7: Das gewichtete Mittel der Ortsvektoren P und @ unterteilt die Strecke PQ im
gewiinschten Verhiltnis.

Schwerpunkt zweier Punktmassen
Vorgabe: Im Punkt P sitze die Masse mp, im Punkt () die Masse mq.
Frage: Wo haben mp und mq ihren gemeinsamen Schwerpunkt S7

Antwort: Zunichst ist klar, dass der Schwerpunkt S auf der direkten Verbindungslinie zwischen P
und @ liegt. Denken wir uns diese Verbindungslinie als einen (masselosen) Stab, an dessen
Enden die beiden Massen mp und mg sitzen, so konnen wir die Frage nach dem Schwerpunkt
umformulieren:

An welcher Stelle S muss ich den Stab stiitzen, damit er aufgrund der beiden Massen weder
auf die eine, noch auf die andere Seite kippt (vgl. Abb. 2.8)7
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mp rp S rQ mo

Abbildung 2.8: Der Schwerpunkt der beiden Massen ist derjenige Punkt S, an dem der Stab gestiitzt
werden kann, ohne dass er auf eine der beiden Seiten kippt.

Hier hilft uns die klassische Mechanik fiir sogenannte starre Korper weiter. Sie lehrt uns,
dass im Gleichgewicht beide Massen gleich stark den Stab zu drehen versuchen. Dabei kommt
es einerseits auf die Massen mp und mg an, andererseits aber auch auf die Hebelarme rp
und rg (Distanzen zum Drehpunkt S).

Das Produkt r - m ist ein Mass fiir die drehende Wirkung der Masse m. Im Gleichgewicht
miissen sich diese drehenden Wirkungen aufheben, sodass folgt:

!
rp-mp=TrQ -mgq - rp:iTQ =mqg:mp

Das bedeutet, die Strecke PQ) muss fiir das Gleichgewicht im Verhiltnis m¢ : mp unterteilt
werden. Wie dies geht, haben wir aber im vorigen Abschnitt bereits gesehen! Wir setzen in
Gleichung (2.10) m = mg und n = mp ein und erhalten:

mp - P +mgq - é mp = mQ -

S = = P+ : 2.11
mp—|—mQ mp+mQ mp—|—mQ Q ( )

Schwerpunkte beliebig vieler Punktmassen

Dieses Resultat lasst sich auf eine beliebige Anzahl Punktmassen erweitern:

Schwerpunkt von n Punktmassen

mi,...,my seien n Punktmassen an den Orten Pi,..., P, resp. mit den
Ortsvektoren P, ..., P,. Dann ist der Ortsvektor S des Schwerpunkts S
dieser n Punktmassen gegeben durch:

—

m1]31—|——|—mnPn
mi+...+my

S = (2.12)

Der Schwerpunkt entspricht einer gewichteten Mittelung aller Ortsvektoren,
wobei die einzelnen Massen jeweils als Gewichte ihres Ortes einfliessen.
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Kapitel 3

Einschub: Der Vektorraum R>

In Abschnitt 1.1 hatten wir den R? als mathematische Beschreibung des realen Raumes vorgestellt.
Jeder Ort entspricht einem mathematischen Punkt mit drei reellen Koordinaten: P(z,y,z) € R3.

Diesen als realen Raum interpretierten R? haben wir benutzt um Vektoren als Verschiebungen
Fé zwischen zwei Punkten P und @ zu verstehen. Wir haben gesehen: Vektoren im R? besitzen
drei reelle Komponenten, von der uns jede einzelne sagt, um wie viel in die jeweilige Achsenrichtung
verschoben werden soll. Auf dieser anschaulichen Vorstellung basierten auch die fundamentalen
Rechenregeln (Addition, skalare Multiplikation), die wir im Kapitel 2 kennengelernt haben.

Weiter haben wir im Abschnitt 1.3 gesehen, dass sich jeder Punkt P auch als Ortsvektor P,
auffassen l3sst. Der Vektor P beschreibt, wie ich vom Ursprung zum Punkt P gelange.

Diese bisherigen Gedanken vor Augen sollten wir uns nun nochmals fragen: Was ist denn jetzt
ganz allgemein ein Vektor? Eine Verschiebung oder ein Punkt oder was?

Die mathematisch fundierte Antwort auf diese Frage kann ich nur geben, indem ich etwas aushole
und ein wesentlich allgemeineres Konzept namens Vektorraum vorstelle. Die Antwort lautet damit
dann einfach: Vektoren sind die Elemente eines Vektorraums. Das schreit natiirlich nach mehr
Erlduterung, die ich geben kann, sobald einmal sauber definiert ist, was denn ein Vektorraum ist. ..

Definition des (reellen) Vektorraums
Ein Tripel (V,+, ) bestehend aus einer Menge V', einer Abbildung (genannt Addition)

+: VXV -—V
(a,b) —> a+b
und einer Abbildung (genannt skalare Multiplikation)
RxV —V
(k,a) — k-a

heisst reller Vektorraum, wenn fiir die Abbildungen + und - die folgenden acht
Axiome gelten:

(1) (a+b)+c=a+ (b+c) firallea,bceV.

(2) a+b=b+a firallea,beV.

(3) Esgibt ein Element 0 € V mita+ 0 =a firallea € V.

(4) Zu jedem a € V gibt es ein Element —a € V' mit a + (—a) = 0.
(5) k-(l-a)=(k-1)-afirallek,lcR,acV.

(6) l-a=afiralleacV.

(7) k-(a+b)=k-a+k-bfirallekeR, a,beV.

8) (k+l)-a=k-a+l-afirallek,lcR, acV.
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Erlauterungen zur Vektorraumdefinition

e Zunichst sei darauf hingewiesen, dass obige Vektorraumdefinition gar nichts Ndheres dariiber
sagt, was V fiir eine Menge ist resp. was ihre Elemente, also Vektoren wie a,b,c € V
effektiv fiir Objekte sind. Aus diesem Grund gibt es hier auch keine Vektorpfeilchen iiber den
Buchstaben. Diese sind niamlich reserviert fiir den Fall V' = R3. Vektoren sind also im rein
mathematischen Sinne nicht “Grossen mit Betrag und Richtung”, sondern zunichst einmal
einfach Elemente eines Vektorraumes.

Das Konzept des Vektorraumes ist dazu gedacht auf ganz viele verschiedene “Dinge” an-
gewendet zu werden. Bereits ohne weitere Informationen konnen gewisse Eigenschaften des
allgemeinen Vektorraums untersucht und einige Zusammenhange bewiesen werden. Diese gel-
ten dann fiir alle mdglichen Vektorraume. Das ist das Tolle an der Sache.?

e Damit eine Menge von Elementen die Menge V eines Vektorraums sein kann, miissen auf ihr
die beiden Operationen Addition und Multiplikation so definiert sein, dass alle acht Axiome
erfiillt sind. Dabei sind die Begriffe Addition und Multiplikation zunachst einmal sehr flexibel zu
verstehen. Mittlerweile kannst du aufgrund deiner Erfahrung nachvollziehen, dass damit nicht
unbedingt die Addition oder die Multiplikation zweier Zahlen gemeint sein muss. Addition und
Multiplikation miissen einfach sinnvoll sein fiir die Elemente von V.

e Betrachten wir die Deklaration der Addition: +: V x V — V bedeutet, die Addition nimmt
zwei Elemente aus V' und macht daraus wieder ein Element von V. D.h., aus dem Paar (a,b)
wird das Element ¢ = a + b gemacht, das wiederum in V' liegen muss.

Analoges gilt fiir die skalare Multiplikation: - : RxV — V bedeutet, die skalare Multiplikation
nimmt als Skalar eine reelle Zahl £ € R und ein Element aus V' und macht daraus wieder ein
Element von V. D.h., aus dem Paar (k,a) wird das Element b = k- a gemacht, das wiederum
in V' liegen muss.

e Obige Definition ist diejenige fiir einen reellen Vektorraum. Damit wird einfach gesagt, dass
die Skalare, mit denen die skalare Multiplikation durchgefiihrt werden soll, reelle Zahlen k € R
sein sollen. Man kann auch Vektorraume mit Skalaren aus anderen Zahlenmengen definieren,
aber damit wollen wir uns hier nicht weiter beschaftigen.

e Werfen wir schliesslich einen Blick auf die acht Axiome. Ein paar davon haben mit Begriffen
zu tun, die wir zum Teil sogar bereits kennen.

(1)4+(2): Die Addition von Elementen des Vektorraumes muss sowohl assoziativ (1), als auch
kommutativ (2) sein.

(3)+(4): Jeder Vektorraum besitzt genau ein Nullelement 0, das durch (3) festgelegt wird.
Es wird auch als “Null” oder “Nullvektor” bezeichnet.

(4): Zu jedem Element a gibt es ein negatives Element oder eben den Gegenvektor —a.
Er ist durch (4) eindeutig festgelegt.

(5): Die skalare Multiplikation muss auf die durch (5) beschriebene Weise ebenfalls assoziativ
sein.

(6): Die Multiplikation mit der Zahl 1 |dsst einen Vektor unverandert.
Achtung: Hier ist die Zahl 1 wirklich die reelle Zahl 1 € R. Im Gegensatz dazu ist das
Nullelement O ein Element von V, also i.d.R. keine reelle Zahl.

(7)+(8): Addition und skalare Multiplikation erfiillen diese beiden Distributivgesetze.

Im Moment ist vermutlich nicht so klar, auf wie viele Dinge das Konstrukt des Vektorraums angewendet werden
kann. Ich kann dir aber versichern: Der Vektorraum ist eines der allerwichtigsten mathematischen Objekte. Ohne
ihn ware die Mathematik nicht das stabile Fundament fiir die moderne Naturwissenschaft, die im 20. Jahrhundert
entwickelt wurde.
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Unsere Verwendung des Vektorraums R3

Nachdem nun allgemein deklariert ist, was ein Vektorraum ist, kdnnen wir uns besser dariiber Ge-
danken machen, wie wir dieses Konzept verwenden.

Unsere Menge V, auf der wir unsere Vektorraume aufbauen, ist jeweils der R?, also die Menge
aller moglichen Zahlentripel (x,y,z) mit z,y,z € R. Der Einfachheit halber sprechen wir vom
Vektorraum R3, auch wenn wir ihn streng genommen mit (R3, +,-) bezeichnen miissten. Was die
Addition und die skalare Multiplikation fiir Elemente des R® standardmissig sind, ist aber dermassen
klar, dass wir es nicht jedes Mal extra zu erwdhnen brauchen.

Mit der Vorgabe V = R? ist allerdings noch gar nichts dariiber gesagt, welche Anschauung
wir mit einem einzelnen Zahlentripel (z,y,2) € R3 verbinden. Es kommen dafiir im Prinzip alle
moglichen Objekte in Frage, die durch drei reelle Zahlen sinnvoll beschrieben werden kénnen. Und
so ergeben sich eben unterschiedliche Anwendungsmoglichkeiten des Vektorraums R?, beispielsweise:

(z,y, z) € R?* = Koordinaten eines Punktes P resp. Ortsvektor P: Wir interpretieren das
Tripel (z,y,2) € R3 als die Beschreibung eines Punktes P in einem Koordinatensystem resp.
als Ortsvektor P, der mich von einem vorgegebenen Ursprung O aus durch Verschiebungen
entlang dreier Achsen zu P bringt. Das Nullelement ist der Ursprung O resp. 0.

(z,y, z) € R?® = Verschiebung im Raum: Das Tripel (z,y,z) € R? steht fiir die Verschiebung
eines Punktes oder eines Objektes aus vielen Punkten. Die Komponenten geben die Verschie-
bungen entlang dreier Achsen an. Hier ist das Nullelement der Nullvektor 0.

(a,b,c) € R? = quadratische Funktion: Wir fassen die drei Zahlen a, b und c als die Koeffizi-
enten der allgemeinen quadratischen Funktion f(z) = az? + bx + ¢ auf. Dadurch werden
alle moglichen quadratischen Funktionen abgedeckt — inklusive aller linearen und konstanten
Funktionen, die fiir a = 0 resp. a, b = 0 darin enthalten sind. Tatsachlich bildet die Menge aller
quadratischen Funktionen einen Vektorraum. Du kannst dir selber iiberlegen, wie wohl die Ad-
dition und die skalare Multiplikation mit quadratischen Funktionen auszusehen haben, damit
die acht Axiome erfiillt sind. Das Nullelement 0 ist hier iibrigens die Nullfunktion f(z) = 0.

In der Vektorgeometrie verwenden wir eine Art Kombination der ersten beiden Beispiele. Wir sprechen
iber Orte (Punkte) im Raum und iiber Verschiebungen zwischen diesen Punkten. Wir haben es
also mit Orts- und mit Verschiebungsvektoren zu tun. Dass beide Dinge vom Verstandnis her nicht
dasselbe sind, wird klar, wenn wir an den Unterschied zwischen Orten und Strecken auf einer einzelnen
Zahlenachse denken. Eine Zahl x ist eine Stelle auf der z-Achse, wahrenddem eine Strecke Az =
29 — 21 den Unterschied zwischen zwei solchen Stellen beschreibt. Die Strecke ist ein Abschnitt der
x-Achse! Analog dazu ist ein Verschiebungsvektor P—Cj eben eine Differenz zwischen zwei Punkten
P und @ im Raum. Das haben wir ganz explizit gesehen: Fé = Q —-P.

Zum Gliick ist die Gefahr nicht besonders gross, Orte und Verschiebungen miteinander zu ver-
wechseln, denn die anschauliche Vorstellung des realen, dreidimensionalen Raumes gibt in der Regel
sofort Aufschluss dariiber, worliber wir gerade sprechen. Egal, ob wir nun Orts- oder Verschiebungs-
vektoren in R?, die Addition und die skalare Multiplikation erfiillen, so wie wir sie kennengelernt
haben, auf jeden Fall die acht Axiome des Vektorraums.

Das letzte der drei Beispiele oben habe ich angefiigt, damit du siehst, dass auch andere Objekte
durch die Elemente eines R? beschrieben werden konnen. Auch auf diese Objekte kann das Vektor-
raumkonzept angewendet werden und alles, was allgemein fiir Vektorraume uberlegt und bewiesen
werden kann, gilt auch fiir solche Anwendungen!

Schliesslich sei noch angemerkt, dass wir ab und zu auch den Vektorraum R? mit Paaren
(z,y) resp. Vektoren (;) als Elemente betrachten. Diesen bringen wir typischerweise mit einem
x-y-Koordinatensystem in Verbindung. Vektoren stehen fiir Punkte oder Verschiebungen stehen und
wir notieren sie ebenfalls mit einem Vektorpfeilchen. Der R? kann stets als Einschrinkung des R?
auf Punkte resp. Vektoren mit z-Koordinate resp. -Komponente 0 aufgefasst werden.
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Kapitel 4

Lineare Unabhangigkeit
und Basen des R’

4.1 Kollinearitat — lineare Abhangigkeit zweier Vektoren

Zwei Vektoren i, 7 € R? heissen kollinear resp. linear abhingig, wenn es einen Skalar k € R gibt,
sodass:
v="Fk-u (4.1)

e Geometrisch bedeutet Kollinearitat resp. lineare Abhangigkeit zweier Vektoren also, dass
beide parallel oder antiparallel zueinander ausgerichtet sind. Schliesslich ist ¥ das Resultat aus
der skalaren Multiplikation von @ mit k und steht somit eben genau parallel oder antiparallel
zu 4 (vgl. Abschnitt 2.2).

e Zwei Vektoren sind nicht-kollinear resp. linear unabhdngig, wenn es keinen Skalar k gibt,
fir den (4.1) zutrifft.

e Gilt (4.1) fiir den Vektor #, so natiirlich auch @ = [- ¥ mit | = + € R. Die lineare Abhingigkeit
resp. Kollinearitat ist also stets eine Aussage, die beide Vektoren umfasst. Wenn ' kollinear zu
i ist, dann ist eben auch w kollinear zu ¢. Daher unterscheiden wir diese Falle auch gar nicht
voneinander, sondern sagen einfach: & und v sind kollinear.

4.2 Komplanaritdt — lineare Abhangigkeit dreier Vektoren

Drei paarweise nicht-kollineare Vektoren i, 7, € R? heissen komplanar resp. linear abhingig,
wenn es zwei Skalare m,n € R gibt, sodass:

w=m-td+n-v (4.2)
e Gleichung (4.2) besagt, dass der Vektor 0 eine sogenannte Linearkombination der beiden
Vektoren « und @ ist. Das bedeutet: 1 ist eine Summe iiber skalare Vielfache von % und 7.
Der Begriff Linearkombination ist von grosser Bedeutung fiir die gesamte Mathematik. Merke
ihn dir gut!
e Komplanaritdt resp. lineare Abhdngigkeit dreier Vektoren bezeichnet den geometrischen
Umstand, dass drei Vektoren beziiglich ihren Ausrichtungen in ein- und derselben Ebene liegen.

Genauer: Lassen wir alle drei Vektorpfeile im Ursprung O beginnen, so liegt die Spitze von
w in der Ebene, die von 4 und ¥ aufgespannt wird. Abb. 4.1 oben auf der folgenden Seite
veranschaulicht diese Aussage.
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Abbildung 4.1: Drei komplanare Vektoren. Jeder der drei Vektoren i, v und 1 lasst sich als Summe
von Vielfachen der anderen beiden Vektoren ausdriicken.

e Die Komplanaritdt umfasst als Aussage stets drei Vektoren. Sind drei paarweise nicht-kollineare
Vektoren komplanar, so ist jeder einzelne eine Linearkombination der beiden anderen. Das
wollen wir uns am Beispiel von Abb. 4.1 auch rechnerisch verdeutlichen.

Beispiel: In Abb. 4.1 wird ein Vektor @ gezeigt, der sich wie folgt als Linearkombination der
beiden Vektoren « und ¥ schreiben |3sst:

5
s 2 . 043.%
w 5 U+ v

Diese Gleichung ldsst sich aber ebenso gut nach @ oder ¥ auflésen:

L2 L 6 L 1 5
U=—--wW——--0 und == -W—= 70
5 5 3 6
e Bei obiger Definition der Komplanaritdt haben wir gefordert, dass die drei Vektoren i, ¢ und
W paarweise linear unabhangig sind. Allerdings sind @, ¢ und @ auch dann komplanar, wenn
zwei oder oder sogar drei von ihnen kollinear sind. Dann kann man sie namlich automatisch

in ein- und dieselbe Ebene legen.

w kann in einem solchen Fall aber nicht unbedingt als Linearkombination von @ und ¢ ge-
schrieben werden. Sind ndmlich « und ¥ kollinear, aber « und @ sind linear unabhangig, dann
gibt es keine zwei Skalare m,n € R, die Gleichung (4.2) erfiillen wiirden.

Gleichung (4.1) ist also nur fiir drei paarweise nicht-kollineare Vektoren das harte Kriterium
fiir die Komplanaritat. Im Prinzip kann man aber vorher liberpriifen, ob von den drei Vektoren
zwei kollinear sind. Ist dies der Fall, so ist die Komplanaritdt automatisch auch erfiillt.
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Uberpriifung der Komplanaritit in einem Beispiel

Betrachten wir zur Verdeutlichung drei ganz konkrete Vektoren, um mitzubekommen, wie Kompla-
naritdt aussieht, wenn man sie antrifft. Gegeben seien also die drei folgenden Vektoren:

4 1 0
u= |8 U= 3 w=| -2
4 -2 6

Zuerst stellen wir fest, dass keine zwei dieser drei Vektoren kollinear sind. Das sieht man wirklich
ganz unmittelbar, insbesondere wenn man rasch iiber die z-Komponenten nachdenkt. . .
Nun setzen wir Gleichung (4.2) an, um die Skalare m und n zu bestimmen:

4 1 0
m-i+n-v=w = m-| 8| +n- 3 =1 -2
4 -2 6

Diese Gleichung entspricht eigentlich einem linearen Gleichungssystem mit drei Gleichungen in den
Unbekannten m und n:

dm+n=0
&+ 3n = -2
dm —2n =6

Gleichungssysteme mit drei linearen Gleichungen hatten wir schon friither gesehen, allerdings hatten
wir damals festgestellt, dass drei Gleichungen braucht, um drei Unbekannte eindeutig festzulegen.
Nun haben wir drei Gleichungen, aber nur zwei Unbekannte. Das Gleichungssystem ist folglich
tiberbestimmt und es ist quasi Zufall, wenn die eindeutigen Werte fiir m und n, die wir beispielsweise
aus den ersten beiden Gleichungen erhalten kdnnen, auch noch die dritte Gleichung erfiillen.

Das iiberrascht uns nicht, denn es ist ja sicher nicht der Normalfall, dass ein beliebig ausgewahlter
dritter Vektor w in derselben Ebene liegt wie die ersten beiden Vektoren @ und 4.

Losen wir nun also zuerst das lineare 2x2-Gleichungssystem bestehend aus den oberen beiden
Gleichungen, um je einen Wert fiir m und fiir n festzulegen:

= = n=-—2 = m =

‘ dm+n=20 ‘

—8m —2n=0
8m+3n=-2

8qm+3n=-2

Sollen die drei Vektoren komplanar sein, so miissen diese Werte fiir m und n im anfinglichen
Gleichungssystem nun auch die unterste Gleichung erfiillen. Das iiberpriifen wir:

1
4m—2n:4-§—2-(—2):2—|—4:6 v

Damit haben wir gezeigt, dass die drei Vektoren tatsachlich komplanar sind.

Vektoren in allgemeiner Lage

An dieser Stelle wollen wir noch kurz festhalten:

Drei zufillig ausgesuchte Vektoren des R? sind weder paarweise kollinear, noch sind sie kompla-
nar. Genau solche nicht speziell aufeinander abgestimmte Vektoren meinen wir in Zukunft, wenn wir
von zwei oder drei Vektoren in allgemeiner Lage sprechen. Zwei oder drei Vektoren in allgemeiner
Lage sollen also stets linear unabhangig voneinander sein.
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4.3 Basen des R?

Vorgabe: Gegeben seien drei von 0 verschiedene, linear unabhingige, also nicht-komplanare Vek-
toren @,b, ¢ € R3.

—

Aussage: Jeder beliebige Vektor 7 € R3 kann als eindeutige Linearkombination von @, b und &
geschrieben werden. Das bedeutet, die Gleichung resp. das Gleichungssystem

Vg =T Qg+ S -by+1t-cy
v=r-a+s-b+t-c resp. Uy =T ay+5-by+1-¢cy (4.3)
Vy=T-a,+85-b,+1t ¢,

hat eine eindeutige Losung (r, s, t).

“Beweis”: Man kann zeigen, dass diese Aussage direkt aus der linearen Unabhangigkeit von @, b
und ¢ folgt, was wir zu einem spateren Zeitpunkt nachholen werden. Uns reicht an dieser Stelle
vorerst eine Plausibilitatsbetrachtung, die in Abb. 4.2 veranschaulicht wird:

Fassen wir @, b und ¢ als drei Ortsvektoren auf, so liegen der Ursprung O, der Punkt A
und der Punkt B in einer bestimmten Ebene E, nicht aber der Punkt C, denn @, b und ¢
sind ja gemass Voraussetzung nicht-komplanar. Mit den Vektoren @ und b I3sst sich folglich
jeder beliebigen Punkt P € E erreichen, aber keine Punkt ausserhalb von E. Dazu wird der
Vektor ¢ bendtigt. Anschaulich gibt es genau einen Punkt P € E, von dem aus ich mit
dem Vektor ¢ zum Punkt V' gelangen kann. Dazu braucht es ein bestimmtes Vielfaches ¢ - ¢
des Vektors ¢. Genauso gehort zum Punkt P gehért eine ganz bestimmte Linearkombination
7@+ s-b der Vektoren @ und b. Das bedeutet aber, zum Ortsvektor 7 gehort die eindeutige
Linearkombination 7 =1 -G+ s-b+t- ¢

Basis: Halten wir nochmals fest: Jeder beliebige Vektor # € R? kann mit (4.3) als eindeutige
Linearkombination dreier linear unabhangiger Vektoren @, b, ¢ € R geschrieben werden.

Aus diesem Grund bezeichnen wir jedes linear unabhiangige Tripel B(d, E, c) als Basis des R?.

Abbildung 4.2: Der Ortsvektor 4/ ist eine eindeutige Linearkombination der drei Vektoren @, b und €.
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Beispiel: Beschreibung eines Vektors in einer neuen Basis

Zur Veranschaulichung gebe ich mir drei linear unabhéngige Vektoren @,b und & vor, die ich als neue
Basis B(d,b,¢) des R? auffassen mochte:

3 2 1
—1 3 1

Nun mochte ich einen bestimmten Vektor ¥ in dieser neuen Basis B ausdriicken:

7 ' Ir+2s+t="7 Ir+2s+t=7|®
v=| -5 | =r-d+s-b+t-¢c < r+0s+7t= -5 & r=-—-5-"Tt @
0 —r+3s+t=0 —r+3s+t=0|®

. O 3(-5—TH 4+ 2s+t=7 s=11+10t |@

2/in @ und ©: 5+Tt+3s+1=0 ‘ 33+&:~6‘@

@in®: 3(11+10t)+8=-5 & 38=-38 < t=-1
iN®undin®: s=11-10 < s=1 und r=-5+7 & r=2

Damit hat der Vektor ¥ in der Basis B die Komponenten 2, 1 und —1. Man kann also schreiben:

T 7 2 T
17: y = —5 = 1 = S
z 0 -1/, t)g

Dabei bringt der Index B zum Ausdruck, dass es sich um eine Angabe beziiglich der Basis B handelt.

Orthogonalitiat und Normiertheit
Von einer Basis werden manchmal zusatzliche Eigenschaften verlangt. Die beiden wichtigsten sind:

Orthogonalitat: Stehen die drei Basisvektoren d, b und & senkrecht zueinander, so sagen wir, sie
sind orthogonal und B(d,b, ) ist eine orthogonale Basis.

Normiertheit: Haben die drei Basisvektoren @, b und C je den Betrag 1, handelt es sich also um
Einheitsvektoren, so sagen wir, sie sind normiert und B(ad, b, ¢) ist eine normierte Basis.

Eine Basis, die gleichzeitig orthogonal und normiert ist, wird auch als Orthonormalbasis bezeichnet.

Die Standardbasis (kartesische Basis)

Vielleicht ist dir nun bereits durch den Kopf gegangen, dass wir seit dem Start der Vektorgeometrie
samtliche Vektoren beziiglich einer ganz bestimmten Basis notieren. Dabei handelt es sich um die
sogenannte Standardbasis des R? mit den Basisvektoren

1 0 0 x
éx=10 g =11 e,=10 sodass: U= |y | =xé,+yé, +ze. (4.4)
0 0 1 z

Die Standardbasis ist offensichtlich eine Orthonormalbasis. Ohne weitere Angaben notieren wir alle
Vektoren beziiglich dieser Standardbasis.
Ganz analog gibt es eine Standardbasis fiir den R?:

@:(b @:G) (4.5)
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Kapitel 5

Das Skalarprodukt

5.1 Die Anwendung des Cosinussatzes auf ein Vektordreieck

Wir wollen in diesem Kapitel erfahren, wie die Winkelberechnung zwischen zwei Vektoren funktio-
niert. Als Voriiberlegung dazu holen wir zunidchst den Cosinussatz aus unserem mathematischen
Fundus und betrachten damit die Situation in Abb. 5.1.

Cosinussatz
|b—al*=|al>+|b]>—2-]d|-|b] - cose

Abbildung 5.1: Der Cosinussatz angewendet auf zwei Vektoren @ und b und ihre Differenz b — .

Der Cosinussatz verbindet die Seitenlangen eines Dreiecks mit einem Winkel. In der Vektorgeo-
metrie sollte uns dies ermdglichen aus Vektorbetragen auf Winkel zu schliessen.

In Abb. 5.1 ist rechts bereits der Cosinussatz fiir die Vektorbetrage |@|, [b| und |b—a| und den
Winkel ¢ zwischen den Vektoren @ und b notiert. Die Vektorbetrdge entsprechen den Seitenlangen
des Dreiecks links. Mit @ = |@| und b = |b| notieren wir diesen Cosinussatz gleich nochmals:
b—a@|> =a®+b>—2ab-cosp (5.1)
Nun lassen sich die Betragsquadrate a? und b? bekanntlich einfach durch die Vektorkomponenten
ausdriicken:

a? =a’ + a?/ + a? und b =b2 + b; + b2 (5.2)

Ebenso kann |b — @ |2 auf die Vektorkomponenten von @ und b zuriickgefiihrt werden:

2

by — ay
b—al*= by — ay = (br—ax)2+(by_ay)2+(bz—GZ)2
b, —a,

= a2 + a2 + a2 + b2 + b2 + b2 — 2a,b, — 2ayb, — 2a:b.

—a? =p2

= a® + b — 2(azb, + ayby, + ab,) (5.3)
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Setzen wir (5.3) auf der linken Seite in den Cosinussatz (5.1) ein, so streichen sich die Betrags-
quadrate auf beiden Gleichungsseiten heraus und wir erhalten eine ganz neue Beziehung:

b—a|>=a®+b>—2ab-cosp | (5.3) einsetzen
= a® + % — 2(azb, + ayb, + a.b,) = a? +b% —2ab - cos | —a® — b
& —2(azby + ayby + azb,) = —2ab - cos ¢ | : (-2)
& agby + ayby + a.b, = ab - cos ¢ (5.4)

Damit haben wir direkt vor Augen, wie sich der Winkel ¢ zwischen den beiden Vektoren @ und b
berechnen lasst. Wir brauchen (5.4) nur noch nach ¢ aufzulésen:

ab - cos ¢ = azb, + ayby + a.b, | : (ab)
b b b
= Cos p = fala +ayby+az - | arccos (...)
a
azby + ayby + ab,

& ( = arccos (5.5)

ab
Zur Winkelbestimmung werden die Vektorbetrdge a und b bendtigt und im Zahler von (5.5) muss
eine Summe (ber die Produkte der einzelnen Vektorkomponenten von @ und ggebildet werden.
That's it! Wir mussten zu unserer bisherigen Vektorgeometrie lediglich den Cosinussatz hin-
zufiigen und schon sind wir in der Lage Winkel zwischen Vektoren zu bestimmen.
An dieser Stelle verzichte ich auf ein Rechenbeispiel. Es wird im iiberndchsten Abschnitt folgen.

5.2 Die Definition des Skalarproduktes

Die Winkelberechnung im vorigen Abschnitt enthielt mit a,b, + ayb, + a.b. einen Ausdruck, der
sich bei naherer Betrachtung als besonders wichtig erweist, wie wir in Kiirze sehen werden. Er ist
das Resultat der komponentenweisen Multiplikation zweier Vektoren & und b, wobei iiber die so
entstehenden Produkte summiert wird. Wir definieren:

Das Skalarprodukt zweier Vektoren

Unter dem Skalarprodukt a - b zweier Vektoren c?,g € R3 verstehen wir die
Abbildung:

R3xR® — R (5.6)
((i, 5) — G- b= azby + ayby + a.b,

Die beiden Vektoren werden also komponentenweise miteinander multipliziert
und anschliessend werden die drei Produkte addiert.

Ganz analog dazu definieren wir das Skalarprodukt fiir zwei Vektoren d, b € R2
wie folgt:

R?2xR? — R (5.7)

(6,5) s d-b= azby + ayby

Egal ob im R? oder im R3, die Eigenschaften der Skalarprodukte sind dieselben.
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Anmerkungen zur Definition des Skalarproduktes

e Das Skalarprodukt heisst so, weil eine Art Produkt zweier Vektoren berechnet wird, das Re-
sultat aber ein Skalar, also eine einzelne reelle Zahl ist.

e Bei den beiden Definitionen (5.6) und (5.7) siehst du in der ersten Zeile jeweils die Mengen-
deklarationen. Dabei bedeutet R? x R® — R, dass aus zwei Elementen des R?, also eben aus
einem Paar (@,b) von Vektoren, ein Element in R, also eine reelle Zahl, gemacht wird.

e Zunichst mag es irritierend erscheinen, dass wir zur Notation des Skalarproduktes dasselbe
Multiplikationszeichen - wie bei der altbekannten Multiplikation zweier Zahlen oder der skalaren
Multiplikation einer Zahl mit einem Vektor verwenden. Das soll uns aber nicht irritieren. Wir
sind erfahren genug, dass wir in jeder Situation jeweils erkennen, ob eben zwei Zahlen, eine
Zahl und ein Vektor, oder nun neuerdings zwei Vektoren miteinander multipliziert werden.?

Die folgenden drei Ausdriicke meinen also grundverschiedene Arten der Multiplikation, einfach
weil nicht dieselbe Kombination von Elementen in die Rechnung hineingegeben wird:

-1 —4 3 -1
3-5=15 4. 3 =1 12 0] - 3 =-34+0+4=1
2 8 2 2
RxR — R R x R? — R3 R3xR® -5 R
Multiplikation Skalare Multiplikation Skalarprodukt
zweier Skalare eines Vektors zweier Vektoren

Im Kapitel 9 werden wir mit dem Vektorprodukt noch eine weitere Art der Vektormultiplika-
tion kennenlernen. Zu dessen Darstellung fiihren wir dann effektiv ein neues Zeichen ein.

5.3 Winkelberechnung mit dem Skalarprodukt

Mit der Notation des Skalarproduktes schreiben wir (5.5) fiir die Berechnung eines Winkels zwischen
zwei Vektoren nun nochmals neu:

Der Zwischenwinkel zweier Vektoren

Der Winkel ¢ zwischen zwei Vektoren a und b berechnet sich folgendermassen:

ab es ab (5.8)
Ccos (p = —— resp. = arccos — )
14 a-b P v a-b

Dabei stehen a und b fiir die Vektorbetrage.

Erste Anmerkungen zur Berechnung des Zwischenwinkels zweier Vektoren

e Der Winkel zwischen zwei Vektoren liegt stets im Intervall [0°;180°]. Das vertrégt sich bestens
mit der Arcuscosinus-Funktion, denn dies ist eine eindeutige Abbildung [—1;1] — [0°;180°].

e In der Vektorgeometrie arbeiten wir in der Regel mit dem Gradmass (°). Achte darauf, dass
dein Taschenrechner auf dieses Winkelmass eingestellt ist (DEG und nicht etwa RAD).?

! Anmerkung: Tatsichlich gibt es Lehrbiicher, die fiir das Skalarprodukt eigene Zeichen einfiihren, z.B. e oder o. Die
meisten kommen allerdings ohne ein spezielles Zeichen aus und auf Stufe Hochschule wird ganzlich darauf verzichtet.

2Ja, diese Winkelberechnung mit dem Skalarprodukt ist eine der wenigen Rechnungen, bei denen die Verwendung
eines TRs in der Mathe erlaubt ist!
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Drei Beispiele zur Winkelberechnung

Beispiel 1: Hier zwei Vektoren im R3:

—2 2
a= 3 und b= 1
1 —6

Die Betrage der beiden Vektoren ergeben sich zu:

a=+v22+32+12=+14 und b=122+4+12 462 =41

Somit erhalten wir fur den Winkel zwischen diesen beiden Vektoren:
-7
~ 107.0°

0 (esasle 1
= arccos —— = arccos — <
7 a-b V1441 J14 41

Beispiel 2: Schauen wir uns zwei zweidimensionale Vektoren an:

- L (12
é’z( z> und b:<5> mit a=+vV32+42=5 und b=+122+52=13

Fiir den Winkel zwischen den beiden Vektoren folgt daraus:

a-b ~3)-(~12) —4-5
(p = arccos % = arccos (=3) (5 : 13) = arccos £ 13 ~ 75.7°

Bemerke: Mit Vektoren € R? funktioniert die Winkelberechnung tatsichlich ganz genau
gleich. Das liegt daran, dass wir unsere anfangliche Uberlegung mit dem Cosinussatz ebenso

gut mit zweidimensionalen Vektoren hatten anstellen konnen und dabei eben dasselbe Resultat
mit dem Skalarprodukt fiir Vektoren € R? erhalten hitten.

Beispiel 3: Betrachten wir nochmals zwei Vektoren im R3:

V3

1
_2\/§
Daraus folgt zunachst die Berechnung der Betrage:

a=+vV3+1+12=+v16=4  und b=+3+49+ 12 =64 =8

Schliesslich erhalten wir fiir den Winkel zwischen den beiden Vektoren:

~(V3)2+ 7+ (-2v3)? —34+7+12 1
= arccos T = arccos 5= 60

@ = arccos 1.8

V3
7
_2\/§

und b

a=

Hier hat sich ein exakter Cosinuswert ergeben. Der Winkel betrigt folglich genau 60°

Zur Erinnerung seien kurz die exakten Werte der Cosinusfunktion tabelliert:

Winkel ¢ 0° 30° 45° 60° 90° 120° | 135° | 150° | 180°
oe |1 [ BT F 5 [0 [ 3| F %]
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5.4 Orthogonalitdatsnachweis — ein Leichtes mit dem Skalarprodukt!

Werfen wir nochmals einen genaueren Blick auf die Winkelberechnung. Multiplizieren wir die Glei-
chung (5.8) mit den beiden Betrdgen a und b, so folgt:

d-b=a-b-cosp (5.9)

Da die Betrage a und b positiv sind, resultiert aus dieser Gleichung eine einfache Fallunterscheidung:

Spitze Winkel: 0° < ¢ < 90° & cosp >0 = @-b>0
Rechter Winkel: © =90° & cosp =0 & i-b=0
Stumpfe Winkel: 90° < ¢ < 180° & cosp < 0 & @-b<0

Das Vorzeichen des Skalarproduktes sagt uns also ganz direkt, wie die beiden Vektoren tendentiell
relativ zueinander ausgerichtet sind. Insbesondere der mittlere Fall ist hervorzuheben!

Orthogonalitat zweier Vektoren

Zwei Vektoren 6,5 + 0 stehen genau dann senkrecht resp. orthogonal
zueinander, wenn ihr Skalarprodukt @ - b verschwindet:

ilb &  d@b=0 (5.10)

Es ist also wirklich sehr einfach festzustellen, ob zwei Vektoren senkrecht

zueinander stehen!

5.5 Das Skalarprodukt mit Einheitsvektoren

Wir betrachten zwei Einheitsvektoren €, und €. Da sie beide den Betrag 1 aufweisen, folgt fiir ihr
Skalarprodukt aus Gleichung (5.9) sofort:
€q - €p = COS (5.11)

Das Skalarprodukt zweier Einheitsvektoren liefert also direkt den Cosinus des Winkels zwischen
den Einheitsvektoren! Diese Aussage ist iibrigens bereits in der Winkelberechnungsgleichung (5.8)
sichtbar enthalten, denn:

a-b da b _, o a L b
COSpYp=——=—"-==2¢ 6 mit €,=— und ¢, = -
a- a b a b

5.6 Hintergriindige Eigenschaften des Skalarproduktes

Zum Kapitelende sollen weitere grundlegende Eigenschaften des Skalarproduktes benannt werden.
Wir werden diese Eigenschaften resp. Rechenregeln fiir das Skalarprodukt selten ganz bewusst und
explizit verwenden. Sie sind aber enorm wichtig fiir ein “geregeltes Verhalten” des Skalarprodukts,
also dafiir, dass wir damit relativ intuitiv umgehen diirfen und es schon seine Richtigkeit hat.

Kommutativitat resp. Symmetrie: Das Skalarprodukt ist symmetrisch beziiglich der beiden Vek-
toren @ und b. Es ist also eine kommutative Operation:

i-b=b-a (5.12)
Dies folgt sofort aus der Kommutativitdt der Multiplikation zweier Zahlen:

G b= azby + ayby + ab, = bya, + bya, +b.a, = b-a
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Betrag eines Vektors und positive Definitheit: Das Skalarprodukt eines Vektors @ mit sich sel-
ber ergibt das Betragsquadrat des Vektors:

I

- @ = aga; + aya, + aza, = al + ai +a?=a? (5.13)
Damit kann der Betrag eines Vektors neu via Skalarprodukt definiert werden:
a=|d|:=va-a (5.14)
Aus (5.13) folgt zudem die positive Definitheit des Skalarproduktes, dass also gilt:
a-a>0 firalled € R? (5.15)
Gleich 0 wird das Skalarprodukt nur fiir den Nullvektor 0.
Betrag des Skalarproduktes: Aus Gleichung (5.9) folgt fiir den Betrag jedes Skalarproduktes:
|EL’-5| =la-b-cosp|=a-b-|cosy

Der Cosinus ist allerdings eine beschrankte Funktion: —1 < cos ¢ < 1. Also: |cos | < 1. Und
somit folgt fiir den Betrag des Skalarproduktes:

@-b|<a-b firalledbeR? (5.16)

Der Betrag des Skalarprodukts zweier Vektoren ist niemals grosser als das Produkt der Betrage
beider Vektoren.

Linearitdt resp. Bilinearitat: Multipliziere ich einen der beiden Vektoren @ oder b mit einem Skalar
k € R, so wird dadurch auch der Wert des Skalarproduktes um den Faktor k vergrossert:

(k-@)-b=4k-(@-b) und G- (k-b)=k-(a-b) (5.17)

Diese Eigenschaft bezeichnet man als Linearitat resp., weil sie fiir beide Argumente des Skalar-
produktes gilt, als Bilinearitat des Skalarproduktes. Sie folgt sofort aus dem Distributivgesetz
fiir reelle Zahlen:

(k‘-c‘i)-g:k-ambx+k-ayby+k-azbz:k-(ambx—kayby—{—azbz):k-(c_i-g)

Distributivitat: Fiir das Skalarprodukt gibt es ein Distributivgesetz. Fiir beliebige drei Vektoren
a,b, ¢ c R? gilt:
6-(b+5):6-b+6-6 (5.18)

Dies lasst sich auf das Distributivgesetz und die Kommutativitdt der Addition der reellen
Zahlen zuriickfiihren:

@ (b0+¢) = az(by + cx) +ay (b, +c,) + a(b, +c,)
= azby + azcy + ayby + ayc, + azb, + a.c,

:axbm—i—ayby—kazbz—kamcm—|—aycy+azcz:c_i-g—{—c_i-é'
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Kapitel 6

Parameterdarstellungen von Geraden
und Ebenen

Bis anhin beschrankten sich unsere Betrachtungen im dreidimensionalen Raum im Wesentlichen auf
einzelne Punkte und Verschiebungen zwischen diesen. Nun wollen wir beginnen ausgedehnte geome-
trische Orte, also Punktmengen zu studieren. Dies sind zunichst unendlich ausgedehnte Geraden
und Ebenen, zu deren Beschreibung im Raum wir Vektoren verwenden werden. Dazu lernen wir eine
ganz Schreibweise kennen und benutzen, die sich Parameterdarstellung nennt. Dabei erreichen wir
alle Punkte der Gerade oder Ebene, indem wir einen resp. zwei reelle Parameter variieren.

6.1 Die Parameterdarstellung der Gerade im R?

Betrachten wir eine in beide Richtungen unendlich lange Gerade g im Raum (vgl. Abb. 6.1). Sie darf
beliebig in unserem dreidimensionalen Koordinatensystem liegen.

Abbildung 6.1: Vektoren zur Parameterdarstellung einer Geraden: Es braucht einen Aufpunkt A resp.
einen Aufvektor A und einen Richtungsvektor .
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Richtungsvektor ¥: Egal welche beiden Punkte P und () auf der Gerade g wir herauspicken, der
Vektor ¢ = @ — P wird bis auf einen skalaren Faktor immer derselbe sein. Jeden solchen
Vektor bezeichnen wir als Richtungsvektor v der Gerade g, denn jeder von ihnen beschreibt
die Raumrichtung, langs der die Gerade ausgerichtet ist. Alle Richtungsvektoren zu einer be-
stimmten Gerade g sind kollinear!

Aufpunkt A und Aufvektor A: Von jedem beliebigen Punkt A auf der Gerade ldsst sich mittels
eines Richtungsvektors ¢ jeder beliebige andere Punkt P auf der Gerade erreichen, indem wir
uns von A aus um ein bestimmtes Vielfaches ¢ - ¢ mit ¢t € R verschieben.

Den Punkt A bezeichnen wir als Aufpunkt, den zugehorigen Ortsvektor A als Aufvektor.
“Mittels A springen wir vom Ursprung aus auf die Gerade ¢."

Die Parameterdarstellung (PD) einer Gerade

Jede Gerade g im Raum kann durch eine Parameterdarstellung — kurz: PD —
beschrieben werden:

—

P(t)y=A+t-7 mit teR (6.1)

Die PD enthilt die Ortsvektoren P simtlicher Punkte P € g, wobei zu jedem P
ein ganz bestimmter Wert des Parameters t gehort.

Zur Beschreibung einer Geraden im Raum wird also ein Aufvektor A und ein
Richtungsvektor ' benétigt, mit denen sich die PD notieren l3sst.

Anmerkungen zur Parameterdarstellung der Gerade

Schreibweise P,(t) = A+t -%: Bei gegebenen A und ¥ fassen wir jeden Punkt P € g als
Funktion des Parameters ¢ auf. Daher schreiben wir P;(t), wobei der Index g zum Ausdruck
bringt, dass hier alle Punkte auf der Gerade g beschrieben werden.

Beispiel: Abb. 6.2 veranschaulicht, dass der Ortsvektor R zum Punkt R € g als Vektorsumme des
Aufvektors A und eines Vielfachen des Richtungsvektors © geschrieben werden kann.

Abbildung 6.2: Zum Punkt R gehort in der PD zur Gerade g mit Aufvektor A und Richtungsvektor
v der Parameterwert t =4, dennesist R=A+4-4.
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Verschiedene Auf- und Richtungsvektoren: Zu jeder Gerade g gibt es beliebig viele Aufvektoren
A, denn grundsatzlich kann jeder Punkt A € g als Aufpunkt fiir die PD dienen.

Ebenso gibt es beliebig viele Richtungsvektoren ¥, die ich zur Beschreibung von ¢ verwenden
kann. Diese sind alle kollinear zueinander.

Hier ein Beispiel von drei PDs, die allesamt dieselbe Gerade g beschreiben:

2 1 5 -3 1 6
Bys)={-1|+s-| 2 Byt)y=|5 |+t | -3 Byu) = [=3] +u-| 12
3 ~1 0 3 4 —6

Bemerke: Die drei Parameter s, t und u haben bei einem bestimmten Punkt P € ¢ in der

Regel nicht dieselben Werte! So gehdren zu P(5,5,0) z.B. s =3, t =0 und u = —%.

Notation als Punktmenge: Eine Gerade ist eine Menge von Punkten oder Ortsvektoren, die wir
im Beispiel von oben streng genommen etwa wie folgt notieren miissten:

2 1
g=_PeR} | P=|-1|+s-| 2 |.,seRr
3 -1
Das ist aber gar umstandlich, sodass wir es bei ]39(3) = ... von oben bewenden lassen — auch

bei der Angabe einer Lésung, die aus einer Geraden besteht.

6.2 Geraden im R?

Bisherige Notationen: In der z-y-Ebene eines zweidimensionalen Koordinatensystems haben wir
Geraden bis anhin durch Gleichungen oder lineare Funktionen beschrieben:

Geradengleichung
implizit explizit Lineare Funktion
ar+by =c y=mzx+q g(x) =mx+q

Dabei steht m fiir die Steigung und ¢ fiir den y-Achsenabschnitt der Gerade. Die Parameter
a, b und c in der impliziten Geradengleichung haben bis dato keine ganz direkte grafische
Bedeutung, ausser dass klar ist, dass es sich fiir ¢ = 0 um eine Ursprungsgerade handelt.

Richtungsvektor v und Steigung m: Die Richtung einer Gerade im R? kann, wie wir bereits ge-
sehen haben, auch durch einen Richtungsvektor ¥ € R? beschrieben werden. Dabei gibt es
eine einfache Umrechnung zwischen ¢’ und der Steigung m:

e Kenne ich die Steigung m einer Geraden, so kann ich sofort einen Richtungsvektor

dieser Gerade angeben:
1
U= 2
0] <m> (6.2)

In Worten: Gehe ich einen Schritt nach rechts, also in die positive z-Richtung, so verandert
sich der y-Wert genau um den Steigungswert m.

e Umgekehrt kann aus jedem Richtungsvektor ¢ auch leicht eine Steigung m gemacht

werden: A A
S x _ 2y
U= <Ay> = m= (6.3)

Rep.: Im Falle der Vertikalen, also fiir Az = 0, gibt es gar keine explizite Form oder
Funktionsgleichung fiir die Gerade.

N.B.: Zu jeder Gerade gibt es unendlich viele Richtungsvektoren, die allesamt kollinear sind.
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Parameterdarstellung: Jeder Punkt A auf einer Gerade kann als Aufpunkt benutzt werden. Mit
dem zugehorigen Aufvektor A und einem Richtungsvektor ¥/ ldsst sich jede Gerade in Form
einer Parameterdarstellung schreiben:

Pt)y=A+t - (6.4)

Die PD fiir eine Gerade im R? sieht also genau gleich aus wie diejenige in Gleichung (6.1) fiir
eine Gerade im R? und funktioniert auch genau gleich. Nur geht es jetzt halt um Vektoren
mit lediglich zwei Komponenten.

Geradengleichung im R3? Ob ich im R? eher eine PD, eine Geradengleichung oder eine lineare
Funktion zur Beschreibung einer Gerade verwende, hangt stark von der jeweiligen Anwendung
ab. Ich benutze diejenige Darstellung, die mir gerade am praktischsten erscheint.

Wie sieht das im R? aus? Miisste es dort nun nicht auch so etwas wie eine Geradengleichung
oder eine lineare Funktion geben?

Antwort: Nein! Und das werden wir im Kapitel 7 auch noch besser ergriinden und verstehen.

Im R? ist die Parameterdarstellung in der Regel die einzige brauchbare Form zur
Beschreibung einer Geraden!

6.3 Relative Lage von Geraden im Raum

Sobald ich mehrere Geraden betrachte, kann ich fragen, wie sie relativ zueinander stehen. Im R3
wollen wir vier Falle voneinander unterscheiden:

e Identitat: Die beiden Geraden liegen aufeinander, sind also identisch.
e Echte Parallelitdt: Die Geraden sind parallel, liegen aber nicht auf-, sondern nebeneinander.
e Schneiden: Die beiden Geraden schneiden sich in einem Punkt.

e Windschief: Die beiden Geraden sind weder parallel, noch schneiden sie sich.
Dies ist der Normalfall, wenn wir zwei zufillig ausgewihlte Geraden im R? betrachten.
Sind die PDs zweier Geraden ¢ und h gegeben, z.B durch ﬁg(s) —A+s-dund Py(t) =B +t-7,

so lasst sich in zwei Schritten bestimmen, um welchen der vier Falle es sich handelt:

Sind @ und v kollinear?
Gibt es ein k € R so, dass: U=k -v 7

JA “\WNEIN
g und h sind parallel! g und h sind nicht parallel!
Liegt A auf h? Gibt es einen gemeinsamen Punkt?
Gibt es ein t € R so, dass: A=B+t-§ ? Gibt es s,t € R so, dass: Ats-i=B+t-7 ?
JA / \NEIN JA / \ NEIN
identisch echt parallel schneiden sich windschief

31



6.4 Die Parameterdarstellung der Ebene im R?

Unter einer Ebene E verstehen wir eine unendlich ausgedehnte, nicht gekriimmte Flache im drei-
dimensionalen Raum R2. Alle Punkte einer Ebene lassen sich wiederum durch eine Parameter-
darstellung beschreiben. Diese beinhaltet nun allerdings zwei Parameter, weil eine Ebene eben ein
zweidimensionales Objekt ist (vgl. Abb. 6.3).

Die Parameterdarstellung (PD) einer Ebene

Jede Ebene E im Raum kann durch eine Parameterdarstellung (PD) beschrie-
ben werden:

— —

Pr(s,t)=A+s-ud+t- mit s, t€R (6.5)

=1

Die PD enthilt die Ortsvektoren P simtlicher Punkte P € E, wobei zu jedem P
ein ganz bestimmtes Wertepaar (s,t) der beiden Parameter s und t gehért.

Zur Beschreibung einer Ebene im Raum wird also ein Aufvektor A und zwei
nicht-kollineare Richtungsvektoren 4 und ¥ bendtigt.

Anmerkungen zur Parameterdarstellung der Gerade

Wie funktioniert die Ebenen-PD? In Gleichung (6.5) erkennen wir, dass wir mit dem Aufvektor
A vom Ursprung zu einem Punkt A € F springen. Was dahinter hinzuaddiert wird, ist eine
Linearkombination der beiden Richtungsvektoren # und v. So erreichen wir jeden Punkt P € E.

Ausblick: Die Parameterdarstellung der Ebene ist zwar einfach und anschaulich, gleichzeitig aber
in der Anwendung eher ein bisschen unpraktisch. Im Kapitel 7 werden wir mit der Ebenen-
gleichung eine geschicktere Beschreibung der Ebene kennenlernen. Aus diesem Grund werden
wir auch nicht allzu viele Aufgaben zur Ebenen-PD bearbeiten.

Abbildung 6.3: Zur Beschreibung einer Ebene E durch eine PD wird ein Aufpunkt A resp. ein
Aufvektor A bendtigt, der mich vom Ursprung auf die Ebene bringt. Mit einer Linearkombination
zweier Richtungsvektoren @ und ¥ gelange ich von dort zu jedem beliebigen Punkt P € E.
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Kapitel 7

Die Koordinatengleichung der Ebene

Eine Punktmenge, die im R? eine Ebene bildet, beschreiben wir bis anhin durch eine Parameter-
darstellung (vgl. Abschnitt 6.4). Dazu bendtigen wir einen Aufpunkt A mit Ortsvektor A und zwei
Richtungsvektoren @ und v.:
T
Pgp(r,s)=|y | =A+r-id+s-v (7.1)
z

Diese Beschreibung einer Ebene ist zwar anschaulich sehr greifbar, rechnerisch aber oftmals eher
unpraktisch. Wir wollen nun eine wesentlich besser handhabbare Beschreibung von Ebenen im R3
kennenlernen, die sogenannte Koordinatengleichung (KG).

7.1 Der Normalenvektor 72 einer Ebene

Die Ausrichtung einer Ebene wird in der Parameterdarstellung (7.1) durch die zwei Richtungsvek-
toren % und U festgelegt. Jeder Vektor w parallel zur Ebene resp. “in dieser drin” Idsst sich als
Linearkombination von # und ¢ schreiben: W =7 -4 + s - ¥.

Betrachten wir Abb. 7.1. Der Vektor 7 soll senkrecht auf der Ebene E stehen. Als Konsequenz
davon steht er auch orthogonal zu jedem Vektor « in E. Einen solchen Vektor 77 bezeichnen wir als
Normalenvektor von E.

Abbildung 7.1: Der Normalenvektor 7 steht senkrecht zu allen Vektoren in der Ebene (hier nur fiir
wp explizit gezeigt) und legt so die Ausrichtung der Ebene fest.
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Ganz anschaulich beschreibt somit auch der Normalenvektor 77 die Ausrichtung der Ebene. An-
statt zwei Richtungsvektoren « und ¥ innerhalb der Ebene zu deklarieren, kann man genau so gut
einen einzigen Normalenvektor 77 angeben, der senkrecht zur Ebene steht!

Alle Vektoren  parallel zur resp. innerhalb der Ebene E sind einerseits Linearkombinationen
von 1 und ¥, stehen andererseits aber auch senkrecht zu 77 — das Skalarprodukt 7 -« verschwindet.
Das bedeutet, die folgenden beiden Vektormengen sind identisch, sofern der Normalenvektor 77 zur
Ebene mit Richtungsvektoren « und ¥ gehdrt:

{(GeR|b=r-d+s-Tmitr,seR} = {WeR|i & =0}

Ab sofort werden wir die Ausrichtung einer Ebene fast ausschliesslich durch Verwendung eines Nor-
malenvektors 77 beschreiben!

Der Normalenvektor 77 zu einer Ebene E steht stets senkrecht
auf E und beschreibt so die Ausrichtung dieser Ebene im Raum.

Achtung! Der Normalenvektor 77 zu einer bestimmten Ebene F ist nicht eindeutig, aber alle Nor-
malenvektoren zu F sind kollinear zueinander. Typischerweise mochten wir die Komponenten von 77
mit moglichst einfachen, ganzen Zahlen angeben!

Beispiel: Die Ebene E sei durch folgende Parameterdarstellung gegeben:

4 -2 7
E: Pg(r,s)=A+r-d+s-o=|-3|+r-[ 1 |+s-| 4
1 1 2

Ein Normalenvektor 7 zu E' steht orthogonal zu allen Vektoren innerhalb von F, also auch zu den
beiden Richtungsvektoren @ und ¥. Daraus folgt:

X . "L B B
Ansatz: 7= | y = u'”'—o N ‘ 20 +y+2=0|@
2 v =0 Tr+4y—22=0|@

= 2.04@ 3x+6y=0 < z=-2y
= in® -2 (2y+y+2z=0 & Hy+z=0 & z=-by

Da der Normalenvektor 7 nicht eindeutig ist, hat sich auch keine eindeutige Losung ergeben. Viel-
mehr sehen wir, dass wir durch unsere Auflésung die z- und die z-Komponente von 72 von der
y-Komponente abhingig gemacht haben. Nun diirfen wir fiir y jede beliebige Zahl # 0 einsetzen.

Insbesondere bietet sich y = —1 an, denn dadurch werden die Komponenten von 7i so einfach, wie
es nur geht:
2
y=-—1 = r=2 und z=5 = n=|-1
5

Achtung Sprachverwirrung! Mittlerweile gibt es ein paar sehr dhnlich klingende Begriffe, die klar
auseinanderzuhalten sind:

Orthogonal: Stehen zwei Vektoren senkrecht aufeinander, so sagen wir, sie stehen orthogonal
zueinander.

Normal: Steht ein Vektor senkrecht auf einer Fldche, so sagen wir, er steht normal zu ihr. Deshalb
sprechen wir auch vom Normalenvektor einer Ebene oder in der Physik von der Normalkraft,
die stets senkrecht von der sie verursachenden stabilen Oberflache weg zeigt.

Normiert: Hat ein Vektor die Lange resp. den Betrag 1, so sagen wir, er ist normiert.
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7.2 Der Weg zur Koordinatengleichung

Vorgabe: Von einer Ebene F sei ein Punkt A € F und der Normalenvektor 7 bekannt:

A, a
A(Ag, Ay, Ay) resp. A= | A, und =
A,

Fragestellung: Gibt es eine Gleichung, durch die sich alle restlichen Punkte P(x,y,z) € E durch
A und 1 beschreiben lassen?

Bemerke: Die Lage von E im Raum ist durch die Angabe ihrer Ausrichtung (Normalenvektor i)
und eines Punktes in ihr (Aufpunkt A) eindeutig festgelegt. Die Frage nach einer Gleichung
zur Beschreibung der Ebene aufgrund dieser Vorgaben ist also durchaus gerechtfertigt.

Aufspiiren der Antwort: Wir betrachten Abb. 7.2. Darin bemerken wir: Egal welchen Punkt P € E
wir auswahlen, der Vektor AP vom Aufpunkt A zu P steht orthogonal zum Normalenvektor

7. Es gilt also: .
n-AP =0 firalle Pe E (7.2)

Tatséchlich ist dies bereits die gesuchte Gleichung, denn darin tauchen neben dem Punkt P
ja effektiv nur noch der Aufpunkt A und der Normalenvektor 77 auf! Allerdings wollen wir sie
noch etwas anders aufschreiben:

!

i-AP=q-(P-A)=i-P-7i-A=0 & @-P=i-A (7.3)

Wir werden diese Gleichung nicht so stehen lassen, aber in dieser Form (7.3) eignet sie sich
bestens fiir die Veranschaulichung an einem Beispiel.

1]

o

[

0(0.0,0)

Abbildung 7.2: Grafik zur Herleitung der Koordinatengleichung. Der wichtigste Aspekt: Der Vektor
AP steht senkrecht zum Normalenvektor 77, egal welchen Punkt P € E wir betrachten.
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Beispiel: Wir benutzen die Ebene aus dem Beispiel in Abschnitt 7.1, zu der wir bereits einen
Normalenvektor 77 bestimmt haben. Es sind:

A, 4 a 2
A=14,|=1[-3 und n= = (-1
A, 1 c 5
Notieren wir damit Gleichung (7.3):
2 T 2 4
n-P=n-A < -1ty ]=|(-1]-(-3
5 z 5 1

& 2r—y+52=2-4+(-1)-(-3)+5-1 & 2zx—y+52=16

Hier sehen wir zum ersten Mal die Koordinatengleichung zu einer bestimmten Ebene E vor
uns. Das ist wirklich eine sehr schlanke Darstellung. Jeder Punkt P(x,y, z) € E erfiillt diese
simple Gleichung! D.h., die Gleichung beschreibt die Ebene vollstandig!

Allgemeines Resultat: Wir haben nun am Beispiel gesehen, wozu Gleichung (7.3) wird, wenn wir
konkrete Werte fiir 77 und A einsetzen:

° Auf der linken Seite steht das Skalarprodukt des Normalenvektors 77 mit dem Ortsvektor
P aller zu beschreibenden, also in der Ebene enthaltenen Punkte P(z,y,z). Im Beispiel
oben war das i - P = 2z — y + 5z, allgemein geschrieben 77 - P=az+ by + cz.

e Auf der rechten Gleichungsseite steht das Skalarprodukt aus Normalen- und Aufvektor,
das einfach eine Zahl d ergibt: 77 - A = aA; + bA, + cA. = d.

Insgesamt ergibt sich aus (7.3) also eine Gleichung der Form:
a
ar +by+cz=d mit 7= | b und d=17-A (7.4)
c

Wahlfreiheit des Aufpunktes: 2x —y+5z = 16 beschreibt offenbar alle Punkte P(x,y, z), die zu-
sammen eine ganz bestimmte Ebene E bilden. Dabei ist d = 16 auf der rechten Gleichungsseite
durch das Einsetzen des Aufpunktes A(4,—3, 1) entstanden.

Das ist im ersten Moment einigermassen irritierend: Wir berechnen den Gleichungsparameter d
aus dem Aufpunkt A (d = ﬁf_f) aber die Wahl dieses Aufpunktes A darf doch gar keine Rolle
spielen! Jeder beliebige Punkt A € E muss doch als Aufpunkt dienen kdnnen! Ergdbe sich mit
einem anderen Aufpunkt A nicht ein anderer Wert d, wodurch (7.4) dann offensichtlich eine
andere Ebene beschreiben wiirde?

Die Antwort lautet: Nein! Jeder beliebige Punkt A € E darf zur Berechnung von d = ii- A auf
der rechten Gleichungsseite verwendet werden. Es ergibt sich immer derselbe Wert, im Beispiel
oben d = 16. Das lasst sich auch leicht beweisen:

Seien A, B € E. Dann gibt es einen Vektor AB so, dass B = A + AB. Dieser Vektor AD
von A nach B liegt in der Ebene E resp. parallel zu ihr. Daraus folgt aber sofort:

i-B=i (A+AB)=q-A+@-AB =7 A also: i-A=7i-B q.e.d.
=0
Das Skalarprodukt i - AB ergibt 0, weil AB ein Vektor innerhalb der Ebene E ist und daher
der Normalenvektor 77 senkrecht dazu steht!

Im Prinzip haben wir mit dieser Uberlegung nur nochmals verifiziert, dass (7.4) die Ebene E
beschreibt. Es ist eben egal, welchen Punkt P(z,y,z) € E ich in die linke Gleichungsseite
einsetze. Es muss sich immer derselbe Wert d ergeben!
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7.3

Die Koordinatengleichung einer Ebene

Halten wir an dieser Stelle in Kiirze fest, was wir eben herausgefunden haben:

Die Koordinatengleichung der Ebene

Alle Punkte P(x,y, z) einer Ebene E erfiillen eine Koordinatengleichung (KG)

ar +by+cz=d (7.5)
Dabei ist
a
n=10b
C

ein Normalenvektor von E und der Parameter d ergibt sich durch Einsetzen
eines beliebigen Punktes P € E in (7.5).

Anmerkungen zur Koordinatengleichung der Ebene

Die Koordinatengleichung (7.5) ist eine lineare Gleichung mit drei Unbekannten z, y und z
und vier Parametern a, b, ¢ und d. Eine solche Gleichung beschreibt eine Ebene im R3.

Die KG zu einer bestimmten Ebene E ist nicht eindeutig, denn die ganze Gleichung (7.5) kann
ja mit irgendeiner von Null verschiedenen Zahl k € R skaliert werden. Z.B. beschreiben

1 5
2z —y+ 5z =16 und x—§y+§z:8 und — 10z + 5y — 252 = —80

allesamt die gleiche Ebene.

Dass in der KG die Komponenten a, b, ¢ eines Normalenvektors 77 von E direkt sichtbar
sind, macht sie quasi zu unserer Standardschreibweise fiir Ebenen, denn diese Eigenschaft ist
ungemein praktisch.

Verwandtschaft zur Geradengleichung ax + by = c: Erinnern wir uns an die lineare Glei-
chung mit zwei Unbekannten: az + by = c. Diese Gleichung beschreibt eine Gerade im R?,
also in einem zweidimensionalen Raum. Eine Gerade ist ein eindimensionales, unendlich aus-
gedehntes und nicht-gekriimmtes Objekt.

Offenbar ist es so: Jede Gleichung, die im R? fiir  und y aufgestellt wird, definiert einen
eindimensionalen geometrischen Ort (eine Art von Kurve). Da es sich bei ax 4 by = ¢ um eine
lineare Gleichung handelt, ist dieser geometrische Ort nicht-gekriimmt, also eine Gerade.!

Ganz analog kdnnen wir im R? nun sagen: Jede Gleichung fiir =, y und z beschreibt eine
Flache, also einen zweidimensionalen geometrischen Ort. Da die Koordinatengleichung (7.5)
eine lineare Gleichung ist, beschreibt sie eine nicht-gekriimmte Fliche, also eine Ebene.?

Ganz Verwegene diirfen an dieser Stelle gerne weiterdenken: Im vierdimensionalen Raum mit
Punkten P(w,z,y,z) € R* beschreibt die lineare Gleichung aw + bx + cy + dz = e einen
nicht-gekriimmten dreidimensionalen Raum. Das ist absolut folgerichtig, auch wenn wir uns
bildlich unter dieser Aussage nicht mehr ganz direkt etwas vorstellen kdnnen.

'Hier ein Beispiel fiir die Gleichung einer gekriimmten Kurve im R?. Zum Kreis mit Radius r um den Mittelpunkt

Mz, ym) gehort die Gleichung (z — :EM)2 +(y— yM)2 =r,

2

2Auch im R? gibt es gekriimmte Flichen, z.B. eine Sphire, also eine Kugeloberfliche. Zur Sphire mit Radius r
um den Mittelpunkt M (zar,yar, 20s) gehort die Gleichung (z — zar)? + (v —ym)® + (2 — 2m)? = 2.
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7.4 Der Schnittwinkel von Ebene und Gerade

Vorgabe: Eine Ebene E sei durch ihre Koordinatengleichung gegeben. Die durch ﬁg(t) =A+t-7
definierte Gerade g durchsteche F in einem bestimmten Punkt S.

Definition des Schnittwinkels von Ebene und Gerade: Abb. 7.3 illustriert, welchen Winkel ¢
wir unter dem Schnittwinkel zwischen der Ebene ' und der Gerade g verstehen wollen,
namlich den spitzen Winkel zwischen der Gerade g und ihrer “Schattenlinie” s auf der Ebene
FE, die entsteht, wenn man ¢ langs der Richtung des Normalenvektors 77 auf E projiziert.

Winkelberechnung: Neben dem Richtungsvektor ¥ von g kennen wir auch den Normalenvektor 77
von E, denn er ist ja direkt aus der Koordinatengleichung ablesbar.

Folglich lasst sich der Winkel (90° — ¢) mittels Gleichung (5.8) bestimmen:

S
<L

cos(90° — ) = —
v

3

Nun ist aber cos(90° — ¢) = sin ¢, sodass wir fiir ¢ finden:

S

- = ¢ = arcsin nev (7.6)

sinp =
n-v

S
4

Negatives Skalarprodukt: Mit (7.6) gibt es allerdings noch ein kleines Problem. Ist ndmlich das
Skalarprodukt 7i - ¥ negativ, so entsteht ein negativer Winkel ¢, denn die arcsin-Funktion ist

eine Abbildung von [—1; 1] nach [—90°;90°].

Die Erklarung fiir diesen Fall liegt auf der Hand: 77 und v zeigen nicht auf dieselbe Seite von
E. Ihr Zwischenwinkel ist folglich stumpf. Das lasst sich rasch korrigieren, indem wir z.B. den
Normalenvektor mit —1 multiplizieren. Damit dndert auch das Skalarprodukt sein Vorzeichen
und wir erhalten wirklich den spitzen Schnittwinkel zwischen E und g.

Dank dieser Erkenntnis lasst sich (7.6) wie folgt korrigieren und gilt nun in jedem Fall:

St
<

(7.7)

( = arcsin

3
4

Abbildung 7.3: Der Schnittwinkel ¢ zwischen Ebene und Gerade.
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7.5 Der Abstand zwischen Punkt und Ebene

Beispielvorgabe: Die Ebene F sei definiert durch F : 2z — 2y 4+ z = 3. Weiter gegeben sei der
Punkt P(—1,5,—3). Er liegt nicht auf E, denn 2-(—1) —2-5+1-(=3) = =15 # 3.

Fragestellung: Wie weit ist der Punkt P von der Ebene E entfernt?

Idee zur Beantwortung: Betrachten wir Abb. 7.4. Fallen wir von P aus das Lot auf die Ebene F,
so ergibt sich der Fusspunkt ' € E. Der gesuchtgﬁbstand dpg zwischen dem Punkt P und
der Ebene E entspricht dem Betrag des Vektors PF.

Weiter liegt dpr = PF auf der Gerade g, die senkrecht auf der Ebene E steht, denn wir haben
von P aus ja das Lot auf E gefallt. Der Normalenvektor 7 von E' ist also ein Richtungsvektor
von g.

Damit ist aber klar, wie sich ' und somit dann auch PF bestimmen lisst:

i. Fiir g kdnnen wir eine PD mit Aufpunkt P und Richtungsvektor 7i ansetzen.
ii. Wir schneiden g mit £ und bestimmen so den Fusspunkt F'.

iii. Aus F erhalten wir den Vektor P und somit auch dessen Betrag PF, der dem gesuchten
Abstand dpg entspricht.

Abbildung 7.4: Der Abstand zwischen einem Punkt und einer Ebene.

Rechnerische Ausfiihrung: Ich folge den oben deklarierten Schritten:

i. Als PD von g ergibt sich aus den Vorgaben:

ii. Diese PD fiigen wir in die Koordinatengleichung von E' ein und erhalten daraus fiir den
zum Fusspunkt F' gehérenden Parameterwert ¢ (F' = Schnittpunkt von g mit E):

A—1+2t)—25—20)+1(—3+1) =—2+4t —10+4t —3+t=—15+9t = 3
& o=18 o t=2
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Daraus folgt fiir den Fusspunkt F:

F=|5|+2-[-2|=|1 = F(3,1,-1)

3 -1 4 2
PF=F—-P= 1 ]1-15|=|-4l=2--2]=2-7
-1 -3 2 1

= dpp=|PF|=2-V/224+2+12=2-3=

Bemerke: Den Punkt F' hatten wir fiir die Abstandsberechnung gar nicht zu bestimmen
brauchen, denn der Vektor PF ist bereits durch PF =t - 1l gegeben.

[i=p

Anstoss zur allgemeinen Losung: Es wird sich als aufschlussreich erweisen den Abstand dpp zwi-
schen Punkt und Ebene ganz allgemein herzuleiten. Nun wissen wir ja, wie das im konkreten
Fall geht, sodass uns die rein algebraische Losung nicht mehr so abstrakt vorkommen wird.

Allgemeine Vorgabe: Die Ebene E und der Punkt P seien nun also allgemein gegeben durch
E: ax+by+cz=dund P(x,y,z).

Allgemeine Lésung: Wiederum folge ich dem Rezept von oben:

i. Fiir die PD von g schreiben wir:

g: éﬂt)zﬁ—{—t-ﬁz y |+t
z

ii. Mit dieser PD gehen wir in die Koordinatengleichung von E und ermitteln den zu F
gehorenden Parameterwert t:

a(z +at) + by +bt) +c(z +ct) = ax + by + cz + (> + V> + )t = d
d—ar —by—-cz
a? + b2 4 ¢2

& (a2+b2+02)t:d—aw—by—cz & L=

iii. Nun erhalten wir fiir den Vektor PF und daraus schliesslich fiir den Abstand dpg:

e d—axr—by—cz
PF =t -ii= .
" a?+b% + 2

e |d — ax — by — cz| |d — ax — by — cz|
= dpgp=|PF|= Va2 + b+ =
pp = |PF| aZ + b2 + 2 e Va2 12+ 2

In diesem allgemeinen Resultat steht Va2 + b2 + ¢2 fiir den Betrag des in der Koordinaten-
gleichung von E verwendeten Normalenvektors 77, also n = |fi| = Va2 + b + ¢2.

Damit wollen wir unser Ergebnis oben auf der ndchsten Seite gleich nochmals notieren.
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Abstand eines Punktes von einer Ebene
Der Abstand dpg des Punktes P(x,y, z) von der Ebene E : ax + by + cz = d ist
gegeben durch:

|d —ax —by —cz| |d—ax — by — cz|

dpp =
e va? + b2+ c? n

Dabei ist n = v/ a? + b2 + ¢ der Betrag des in der Koordinatengleichung von E
verwendeten Normalenvektors 1.

(7.8)

Erste Diskussion der allgemeinen Losung: Wenn man iiber ein allgemeines Resultat zu einem
bestimmten Problem verfiigt, sollte man es nicht verpassen daraus Aussagen zum einen oder
anderen Spezialfall abzuleiten:

e Abstand der Ebene zum Ursprung: Wihlen wir fiir P den Ursprung O(0,0,0), so
vereinfacht sich (7.8) ganz wesentlich und gibt uns direkt an, wie weit die Ebene E vom
Origo entfernt ist:

Abstand der Ebene vom Ursprung: dop = 1d] (7.9)
n

Der Parameter d hat also ganz direkt mit dem Abstand der Ebene vom Ursprung zu tun.
Eine Ebene durch den Ursprung hat stets d = 0.

e Normierter Normalenvektor: Haben wir in der Koordinatengleichung von E einen nor-
mierten Normalenvektor 7i verwendet (n = 1), so vereinfacht sich (7.8) ebenfalls:

Abstand Punkt—Ebene bei normiertem 7i: dog = |d — ax — by — cz| (7.10)

e Abstand Ursprung—Ebene bei normiertem Normalenvektor: Kombinieren wir die
beiden obigen Fille, so ergibt sich eine ganz besonders einfache Aussage zum Abstand
der Ebene E vom Ursprung O:

Abstand der Ebene vom Ursprung bei normiertem 7i: dor = |d| (7.11)

Verwenden wir also einen normierten Normalenvektor zur Beschreibung der Ebene, so
hat der Parameter d nicht nur mit dem Abstand zum Ursprung zu tun, vielmehr ist sein
Betrag gleich dem Abstand der Ebene zum Ursprung!

e Unterscheidung der beiden Halbraume: Die Betragsstriche in (7.8) sorgen lediglich
dafiir, dass der berechnete Abstand stets positiv herauskommt. Lassen wir die Betragsstri-
che weg, so kdnnen sich positive und negative Werte ergeben. Aus Griinden, die erst im
ndchsten Abschnitt ersichtlich werden, kehre ich noch die Vorzeichen um und definiere:

hPE::am+by—|—cz—d:aac+by—|—cz—d (7.12)
VeI & n
Alle Punkte P, fiir die hpg positiv herauskommt, liegen auf der einen Seite von E, alle mit
negativem Wert auf der anderen — wir sagen: sie liegen in unterschiedlichen Halbraumen.
Dabei besagt ein positiver Wert, dass man sich in die Richtung des Normalenvektors von
der Ebene entfernen muss, um zu P zu gelangen. Fiir Punkte mit negativem hpp muss
man in die Gegenrichtung von 77 von E weggehen.
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7.6 Die Hesse’'sche Normalform der Koordinatengleichung

Die Koordinatengleichung ax + by + cz = d beschreibt eine Menge aus Punkten P(x,y, z), die zu-
sammen eine Ebene F bilden. Wie jede Gleichung, so diirfen wir auch diese Koordinatengleichung mit
Aquivalenzumformungen nach Belieben umstellen, ohne dass sich dabei etwas an der Lésungsmenge
verandert. D.h., die umgeformte Gleichung wird immer noch dieselbe Ebene E beschreiben.

Auf diese Weise bringe ich die Koordinatengleichung auf eine andere Form:

ar +by+cz—d
Va2 + b+ 2

In dieser Form steht nun auf der linken Seite der Ausdruck fiir hpg aus Gleichung (7.12)!

Wir kénnen die Koordinatengleichung einer Ebene also in Kiirze auf eine Form bringen, in der
auf der einen Gleichungsseite ein Ausdruck fiir den Abstand eines Punktes P(z,y, z) von der Ebene
steht. Und natiirlich muss dieser Abstand gleich Null sein, wenn der Punkt zur Ebene gehoren soll!

Diese Gleichungsform beinhaltet demnach ganz unmittelbar sehr praktische Informationen iiber
die Ebene, aber auch iiber die Lage anderer Punkte relativ zu ihr. Sie hat deshalb nach ihrem Erfinder
einen eigenen Namen erhalten: Hesse’sche Normalform.

ar +by+cz=d & ar +by+cz—d=0

Hesse’sche Normalform (HNF) der Koordinatengleichung

Subtrahieren wir von der Koordinatengleichung ax + by + cz = d einer Ebene E den
Parameter d und dividieren anschliessend durch n = v/a? + b2 + ¢2, so erhalten wir
die Hesse’sche Normalform (HNF) der Koordinatengleichung:

ar +by+cz—d
n

HNF:

=0 (7.13)

=hpg

Dabei steht die linke Seite hpg fiir den mit einem Vorzeichen behafteten Abstand
eines Punktes P(z,y, z) von der Ebene E, wobei sich drei Fille unterscheiden lassen:

hpg >0 < P liegt auf der Seite von F, in die der Normalenvektor 77 zeigt
hpr =0 < P liegt in der Ebene F
hpp <0 <& P liegt auf der Seite von F, in die der Vektor —1i zeigt

Die zwei Seiten von E werden als Halbraume bezeichnet.

P mit hpg >0 =
\hpgl

. ® Q mit hgp=0
' '
|

|

|hrE| E
R mit hgp <0 -7

Abbildung 7.5: Lage von Punkten fiir verschiedene Vorzeichen von hpg.
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Kapitel 8

Dreireihige Determinanten

In diesem Kapitel lernen wir sogenannte dreireihige Determinanten zu berechnen und damit lineare
3x3-Gleichungssysteme zu I6sen. Es ist ein Einschub, der zunachst nur bedingt mit Vektorgeometrie
zu tun haben scheint. Wir werden erst im ndchsten Kapitel erfahren, wo der direkte Zusammenhang
besteht und wie man das sogenannte Vektorprodukt als dreireihige Determinante auffassen kann.

8.1 Rep.: Zweireihige Determinanten und 2x2-Gleichungssysteme
Satz: Das lineare 2x2-Gleichungssystem

a1z + by =1
asx + boy = co

hat genau dann genau eine Lésung, wenn seine Determinante

D = “ bl = a1b2 — a2b1
as bg
verschieden von null ist. Sie lautet:
D, D,

= | =, == 8.1

@ = (52) (6.1)
mit D, := €1 L= c1bs — c9b;  und Dy = 1 0 = aj1cy — asCy
ca by az ¢

Das wollen wir besser nochmals kurz beweisen. . .

Beweis: Wir I6sen das Gleichungssystem mit dem vertrauten Additionsverfahren:

®
@

a1a2x + agb1y = ascy
arasx + ar1boy = aicy

a1x + by =c1

) as - @:
=N
axx + bay = c2

@ ay - ®@:

= @ — @Z albgy — agbly = a1C2 — asC1 <~ (albg — agbl)y = a1C2 — a2C1

a1Ce — asCq Dy . . c1by — caby D,
= = = = d auf dieselbe Weise: = = —
Y 1b2 le una au 1eselibe €el1se x 1b2 2b1

Diese Briiche existieren nur, falls D = a1bs — agb; # 0. q.e.d
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Zur Erinnerung: Die Ldsung eines linearen 2x2-Gleichungssystems entspricht der Bestimmung des
Schnittpunktes zweier Geraden g und h in einem x-y-Koordinatensystem. Fiir D # 0 sind die beiden
Geraden nicht parallel und haben somit einen eindeutigen Schnittpunkt.

Explizit: Wird g durch ajx + byy = ¢ beschrieben, so ist y = —‘g—llx + % = mixz + ¢1. Die
Steigung von g ist also mq; = —Z—ll. Analog ist die Steigung von h : asx + by = co gegeben durch
mg = —‘;—;. Wiren die beiden Steigungen gleich, so ware m; = my resp. —‘;—11 = —‘;—5 und somit

a1b2 = a2b1 resp. eben D = albg — a2b1 =0.

8.2 Rechenregeln fiir zweireihige Determinanten

Bei der Berechnung zweireihiger Determinanten werden 2x2 Zahlen nach einer bestimmten Vorschrift
miteinander zu einer neuen Zahl verrechnet:

(8.2)

a b
e d '.—ad—bc

Aus dieser Definition lassen sich ein paar fundamentale Rechenregeln fiir Determinanten ableiten.
Diese werden spater gleich oder zumindest dhnlich auch fiir dreireihige Determinanten gelten.

“Distributivitat”: Fir alle a,b,c¢,d, e, f € R gilt:
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a+b c| |a c b ¢
d+e f|=|d F|T]e 1 (8.3)
a b+c| |a a c
doetrf|=|del|lTla (8.4)
a—b c a c b ¢
d—e f| |d f e f (8:5)
a b—c a a c
d e—f| |d e d f (8.6)
Die Beweise sind mittels (8.2) rasch erbracht:
a+b ¢ — (a4 b)f—(d+e)c=af —cd+bf — ce = a c n b ¢ etc
dte f = (a elc=af —c ce = i f e f .
“Skalare Multiplikation”: Fiir alle a,b,c,d, k € R gilt:
ka b a b a kb a b
‘kcd‘:k'c d‘ und ¢ m‘:k'c d‘ (8.7)
ka kb a b a b a b
ebenso: ‘ d ‘—k‘- . d‘ und ‘k:c kd‘—k- . d' (8.8)
Die Beweise sind trivial. Ich verzichte darauf sie explizit zu notieren.
Zeilen- und Spaltenvertauschung: Fiir alle a,b,¢,d € R gilt:
a b c d a b b a
. d':_ u b‘ ebenso: c d‘:_'d ‘ (8.9)




8.3 Dreireihige Determinanten und lineare 3x3-Gleichungssysteme

Wir wollen nun auch fiir lineare 3x3-Gleichungssysteme (3x3-LGS) ein Determinantenverfah-
ren entwickeln. Dieses soll auf dem Verfahren fiir 2x2-Gleichungssysteme und den Regeln fiir 2x2-
Determinanten aufbauen.

Vorgabe: Wir betrachten das allgemeine lineare 3x3-Gleichungssystem:

ax+biy+ciz=d |©
asT + boy + coz = do | @ mit ay,...,d3 €R (8.10)
asx +bsy +c3z=d3 | @

Losung: Beim Ldsen von Gleichungssystemen ist es ein probates Mittel als Zwischenschritt die eine
Unbekannte durch eine andere auszudriicken. Genau das machen wir nun, indem wir zunachst
@ und @ neu schreiben und als 2x2-LGS auffassen:

boy 4 coz = dy — asx
b3y 4+ c3z = d3 — asx

Sind y und z die Unbekannten dieses LGS, so kdnnen wir aufgrund des Determinantenverfah-
rens fiir 2x2-LGS gemiss (8.1) die Losung direkt notieren:

bg d2 — a2

d2 — ar C2
D, bs ds3— asx

D d3 —azr c3 q
y D bg Co D b2 C9
by c3 by 3

Dabei haben wir vorausgesetzt, dass D = bycg — bgca # 0 ist.

Nun setzen wir diese Losungsausdriicke fiir y und z in @ ein und multiplizieren danach mit D:

d2 — agr C3
d3 — asxr c3

b2 d2 — agT
bg dg — asx

ayx + by - +ep - —d
ba 2 ba 2
by c¢3 by c¢3
b2 (&) d2 — a2 C3 b2 d2 — asx . b2 (6]
= @ bg C3 + bl ‘ dg — asxr c3 “ bg dg — asx a bg C3

Auf die Determinanten bei b; und ¢; wenden wir nun die “Distributivregeln” (8.5) und (8.6),
sowie die Regel zur “skalaren Multiplikation” (8.7) an:

dy ¢
dg C

by c2
bg C

az C2 by as

as c¢s3

ai1x + by

by c2
b
3 C3

— C1x ’ bg as
So kompliziert diese Gleichung aussieht, es handelt sich um eine ganz normale lineare Gleichung
in der Unbekannten x. Schliesslich sind alle Determinanten einfach Zahlen. Wir I6sen die
Gleichung auf die iibliche Art und Weise: Separieren, x ausklammern und am Ende durch die
Klammer teilen. Hier zunachst die Separation und das Ausklammern:

- by ¢ - az C2 _ e by as _ by ¢ . da c2 _ e by da

by e az c3 by ag Ybs s Ylds cs Ylby ds

by ca az C2 ba as —d b ca dy co by do
=T\ - Ty =dy “hlyg Ty, d
3 C3 az C3 3 as 3 C3 3 C3 3 as
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Bevor wir nun bald durch die Klammer teilen, wende ich noch die Regel (8.9) zur Spaltenver-
tauschung auf die Glieder mit Vorfaktor ¢; an:

rla b2 (6] as Co a9 b2 —d b2 (6] . d2 Co I d2 b2
! bg C3 as Cs as bg ! bg C3 ! dg C ! dg bg

Definition der dreireihigen Determinante: In obiger Gleichung steht nun links in der grossen
Klammer ein Ausdruck, den wir auf der rechten Gleichungsseite sehr dhnlich wiederfinden.
Diese Ausdriicke lassen sich als Ausrechnung einer dreireihigen Determinante, wenn wir
diese wie folgt definieren:

(8.11)

¢ e
o-|d 1
g

> o o

c
fl=a-
]

Die dreireihige Determinante wird also aufbauend auf der zweireihigen Determinante definiert.
Die Eintrage in der obersten Zeile werden je multipliziert mit einer zweireihigen Determinante,
die sich aus den Eintrdgen in den unteren beiden Zeilen aus den anderen beiden Spalten ergibt.
Wenn ich diese 2x2-Determinante so zusammenfiige, wie sie in der dreireihigen Determinante
steht (ohne Spalten zu vertauschen), so ergibt sich beim zweiten Glied ein Minuszeichen.

Fortsetzung der L6sung: Unsere obige Gleichung kann nun kiirzer geschrieben werden:

ar b1 < di b1
xX - a9 b2 (6] = d2 b2 Co
az bz c3 d3 b3 c3

=D =D,

Falls nun D # 0 ist, diirfen wir durch diese Determinante teilen und erhalten, wie schon beim
2x2-LGS: D
x

= — 8.12

= (8.12)

Dabei entspricht D, fast der Determinante D, nur dass wir die Spalte der urspriinglich bei x

stehenden Koeffizienten a1, as und az durch die Konstantenspalte mit dy, do und d3 ausge-

tauscht haben.

Bei dieser Herleitung haben wir nach = aufgeldst und dabei A # 0 vorausgesetzt. Hatten wir
nach y aufgeldst, so ware die Voraussetzung B # 0 nétig gewesen und bei z C # 0.

Wenn D # 0 ist, kdnnen nicht alle diese Unterdeterminanten A, B und C gleich null sein.
Man kann deshalb fiir D # 0 mindestens eine Variable bestimmen.

Tatsachlich gilt aber (ohne Beweis): Ist D # 0, so konnen alle Variablen bestimmt werden

und es gilt:
(D, D, D,
(xayaz)_<D’DaD>

Ausgeschriebene Determinante: Die Definition (8.11) kann man auch ganz ausschreiben. Wir
erhalten sechs Glieder, drei positive und drei negative:

ar b by ¢ az € az by
D=|ay by ¢ |=aj- — by - +cp -
bs c3 as az b3
a3 by c3

= a1(6203 — bgCQ) — bl(a263 — agcg) + Cl(agbg — agbg)

= a1bacg + bicgas + crasby — arbscy — brases — crbacs
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8.4 Rechenregeln fiir dreireihige Determinanten

Wie bei zweireihigen Determinanten (vgl. S. 44), so gibt es auch bei dreireihigen Determinanten rela-
tiv einfache Rechenregeln, von denen wir ein paar kurz festhalten wollen. Auf die Beweise verzichten
wir. Sie sind mittels der Definition (8.11) und der rasch zu erledigen:

Berechnungsverfahren: Aufgrund der Ausmultiplikation auf der vorangegangenen Seite unten kann
man sich weitere Berechnungsverfahren ausdenken, z.B.:

ot

ai by b
N X >< /
. b 2 = +a [)2 c3 + {)1 Co a3 + C1 2 [)3
/ )< X \,\\ —c1byas — ajcabs — byascs
bs a by

Letztlich spielt es keine Rolle, wie du eine dreireihige Determinante berechnest — Hauptsache
du bist darin geiibt und sicher!

“Distributivitdt”: Fiir jede Determinante mit reellen Eintragen gilt:

a+b ¢ d a ¢ d b ¢ d
e+f g h|l=|e g h|+|f g h etc.
i+7 kI i k1 i k1

“Skalare Multiplikation: Wird eine Zeile oder eine Spalte mit einem Faktor k& multipliziert, so auch
der Wert der Determinante:

ka kb kc a b c a kb c a b c
d e f|=k-|def und d ke f|l=k-|def etc. (8.13)
g h g h i g kh i g h i

Zeilen- und Spaltenvertauschung: Bei der Vertauschung zweier Zeilen oder Spalten wechselt die
Determinante ihr Vorzeichen:

de f a b c c b oa a b c
abc|l=—=|def und fed|=—|def etc. (8.14)
g h i g h 1 i h g g h 1
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Kapitel 9

Das Vektorprodukt

In diesem Kapitel wollen wir eine neue Vektoroperation, das sogenannte Vektorprodukt zweier Vek-
toren, kennenlernen. Wir benennen zuerst gewisse Eigenschaften, die dieses Vektorprodukt aufweisen
soll und definieren es auf diese Weise. Anschliessend werden wir aus diesen Eigenschaften folgern,
wie sich das Vektorprodukt ganz konkret berechnen lasst, damit es eben diese Eigenschaften erfiillt.
Dieses Vorgehen ist fiir uns eher ungewohnt. Bisher wurde — nicht nur in der Vektorgeometrie
— eine neue Operation jeweils einfach durch ihre Rechenvorschrift vorgestellt und anschliessend
wurde geschaut, welche Eigenschaften sie folglich aufweist. Letzte grosse Beispiele hierfiir waren das
Skalarprodukt zweier Vektoren oder die dreireihige Determinante bei einem 3x3-Gleichungssystem.
Nun werden wir aber eben zuerst die Eigenschaften deklarieren, die unser Vektorprodukt auszeichnen
sollen, und danach werden wir schauen, wie das Vektorprodukt folglich zu berechnen sein muss.

9.1 Die Eigenschaften des Vektorproduktes

Definition des Vektorproduktes a X b aufgrund seiner Eigenschaften
Gegeben seien zwei Vektoren @,b € R3.

Das Vektorprodukt @ x b wird durch die folgenden vier Eigenschaften wohldefiniert:

1. @ x b ist selber wieder ein Vektor ¢ € R3:
Vektorprodukt: x: (R3,R%) — R3
(@b) +—> c=axb
Sind @ und b kollinear, so ergibt ihr Vektorprodukt den Nullvektor 0.
2. &=axb steht orthogonal zu jedem der beiden Eingabevektoren d und b:
¢lda und ELD
3. Der Betrag ¢ = |d x 5| ist gleich der Flachenzahl des Parallelogramms, das

durch die Vektoren @ und b aufgespannt wird.

4. Die drei Vektoren d, b und €= d x b bilden in dieser Reihenfolge zusammen ein
Rechtssystem.

N.B.: Das Vektorprodukt wird oft auch als Kreuzprodukt bezeichnet, z.B. auch in GeoGebra,
was sich im Symbol x widerspiegelt. In manchen Quellen wird als Zeichen aber auch ein A verwendet,
damit keine Verwechslung mit allfalligen Buchstaben = entsteht.
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Schrittweise Uberlegungen zur Eindeutigkeit des Vektorproduktes

Wir wollen uns besser rasch iiberlegen, dass obige Eigenschaften ein eindeutiges Resultat fiir das
Vektorprodukt @ x b definieren, denn das ist doch eine sinnvolle Forderung an eine neue Operation.

Die erste Eigenschaft im Kasten auf der vorangegangenen Seite ist noch keine grosse Ein-
schrankung. Es wird nur definiert, welcher Art Resultat des Vektorproduktes sein soll, namlich
ein Vektor, also ein Objekt mit drei Komponenten.

. Die zweite Eigenschaft, also dass @ x b senkrecht zu @ und 5steht, ist aber wirklich eine starke

Forderung. Sofern @ und b nicht kollinear stehen, ist aber klar, dass es eine ganz eindeutige
Richtung senkrecht zu den beiden Eingabevektoren gibt.

Spezialfall: Sind @ und b kollinear, so verschwindet das Vektorprodukt resp. es ergibt sich der
Nullvektor 0. Damit ist das Resultat fiir diesen Fall eindeutig festgelegt.

Die dritte Eigenschaft legt die Lange des Resultatvektors ¢ = @ X b fest. Der Betrag |d x
b| entspricht der Flachenzahl des von @ und b aufgespannten Parallelogramms. Mit ganz
herkdmmlicher Trigonometrie l3sst sich rasch zeigen, dass diese Lange resp. Flache durch

@] =|@xb|=a-b-sing (9.1)

gegeben ist, wobei ¢ fiir den Winkel zwischen den beiden Vektoren @ und b steht.
Fiir alle Vektorpaare @ und ggilt: 0° < ¢ < 180°. Und somit auch: 0 < sinp < 1.

Das passt auch bestens mit dem Spezialfall zusammen: Sind @ und b kollinear, so spannen sie
kein Parallelogramm auf resp. dessen Flache schrumpft auf 0 zusammen. Es ist also sinnvoll,
dass das Resultat des Vektorproduktes in diesem Fall der Nullvektor 0 ist.

. Sind Richtung und Lange durch die zweite und die dritte Eigenschaft vorgegeben, so gibe

es fiir @ x b immer noch zwei Moglichkeiten, namlich zwei gleich lange Vektoren, die ein-
ander entgegengesetzt gerichtet sind. Welche dieser beiden Moglichkeiten das Resultat des
Vektorproduktes sein soll, wird durch die vierte Eigenschaft festgelegt. Dazu definieren wir:

Orientierung eines raumlichen Dreibeins — Rechtssystem

Eine dreidimensionale Basis (d, E,E ) bildet ein sogenanntes Rechtssystem resp. ist
positiv orientiert, wenn die drei Vektoren in der angegebenen Reihenfolge durch
Daumen, Zeige- und Mittelfinger der rechten Hand dargestellt werden kénnen.

In den folgenden Figuren bildet das Vektortripel (a, 5, @) in den beiden Darstellungen
links je ein Rechtssystem dar, in den anderen beiden nicht.

Beim Vektorprodukt bilden (@, b, x b) ein Rechtssystem, wodurch die Blickrichtung von @ x b
festgelegt wird und schliesslich das Vektorprodukt @ x b eindeutig definiert ist.

Abb. 9.1 fasst alle Uberlegungen in einer einzigen Grafik zusammen.
Aber wie l3sst sich denn nun der Vektor ¢ = @ x b ganz konkret aus den Komponenten von @
und b berechnen? Genau diese Frage wird im ndchsten Abschnitt beantwortet.
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= a x b in Richtung des Normalenvektors von F,

sodass @, b und ¢ ein Rechtssystem bilden

Abbildung 9.1: Das Vektorprodukt a x b zweier Vektoren @ und b liefert als Resultat einen eindeutigen
Vektor ¢. Dieser steht senkrecht zu @ und zu 5 ist also ein Normalenvektor der Ebene F, die @ und b
enthdlt. Der Betrag von ¢ entspricht der Flachenzahl des von @ und I;aufgespannten Parallelogramms
und die drei Vektoren @, b und & bilden ein Rechtssystem.

9.2 Die Berechnung des Vektorproduktes

Damit wir anschliessend ohne Unterbruch die konkrete Berechnung des Vektorproduktes herleiten
kdnnen, empfehlen sich ein paar Uberlegungen vorweg:

Nicht-Kommutativitit: Da @ b und @ x b in dieser Reihenfolge ein Rechtssystem bilden, kann
das Vektorprodukt nicht kommutativ sein: @ x b # b x . Tatsichlich zeigt der Vektor b x @
genau in die Gegenrichtung von d x b, ist aber gleich lang wie dieser, denn am Parallelogramm,
das von @ und gaufgespannt wird, hat sich durch die Vertauschung der Reihenfolge nichts
gedndert. Deshalb muss gelten:

bxd=—(@xb) (9.2)

Skalierung eines Eingabevektors: Multipliziere ich einen der beiden Eingabevektoren mit einem
Skalar k£ € R, so dndere ich dadurch seine Ldnge, aber nicht seine Richtung. Die Fliche des
Parallelogramms wird dadurch ebenfalls mit dem Faktor k skaliert, denn es wird ja einfach
eine Seite mit diesem Faktor gestreckt. Folglich gilt fiir das Vektorprodukt:

(k-@)xb=ax (k-b)=k-(@xb) (9.3)
Distributivitat: Schliesslich gilt fiir das Vektorprodukt ein Distributivgesetz:
Ax(b+&)=(@xb)+(a@x&) (9.4)

Auch dieses Distributivgesetz ldsst sich unmittelbar aus den Eigenschaften des Vektorproduk-
tes ableiten. Es geht um die Betrachtung von Parallelogrammflachen, wie Abb. 9.2 fiir drei
komplanare Vektoren @, b und ¢ zeigt. Die Uberlegung liesse sich auf eine nicht-komplanare
Situation erweitern, worauf wir hier aber verzichten wollen.

Vektorprodukte der kartesischen Basisvektoren: Die Vektoren der kartesischen Basis (= Stan-
dardbasis) sind die Einheitsvektoren &, € und €3, die in die Richtungen der drei Koordina-
tenachsen zeigen. €1, €5 und €3 bilden in dieser Reihenfolge ein Rechtssystem, woraus folgt:

— — — — —

_)3 ey X €3 = €1 €3X61=€

€1 X €y =
B g ? (9.5)

2
62X€1:—€3 €3 X e = —eq €] X ez = —e9
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Abbildung 9.2: Die zwei Parallelogramme ABDC und CDFFE haben zusammen eine Fliche, die
genau derjenigen des Parallelogramms ABF' I entspricht. Folglich ist das Vektorprodukt distributiv:

(@xb)+(@xc)=dx (b+7).

Das Vektorprodukt in Komponenten
Nun wollen wir die drei Komponenten von a@ x b durch diejenigen von @ und b ausdriicken.
Zunichst lassen sich zwei Vektoren @ und b je als Linearkombination der kartesischen Basisvek-

toren ausdriicken:
ay bl
a=1 as =ay- €] +ag-€+as-€es und b= by =by-€1 +by-€y+b3- e
b3

as
Damit kdnnen wir jetzt fiir das Vektorprodukt schreiben:

6)(526X(b1-€1+bz-€2+b3-€3)
9.
(4)5:><(61'51)+6X(bg-é})—i—ﬁX(bg-é@,)

—

-(6X€2)+bg-(6><€3)

-€2+a3-€3)x€1)
+by- ((a1-€ +az- & +ag- &) x &)
+ b3 ((a1 - € + az - €+ az - &) X &)

= =—é3 =é>
+b2 (a1 (51X52)—|—CL2-(52X_)2)—|—a3-(€3><62))
——
253 :6 :741
+ b3 - (a1 - (€1 x €3) 4+ ag - (€2 x &) + az - (€5 x €3) )
~ Z ~
=€ =0

—agby - €3+ azby - €2 + a1by - €3 — azby - € — a1bz - € + agb3 - €1
(agbs — agby) - €1 + (agby — a1b3) - €3 + (a1by — agby) - €3

a2b3 — a3b2
= agbl — a1b3

a1b2 — a2b1
Somit haben wir herausgefunden, wie das Vektorprodukt zweier Vektoren @ und b aus deren Kom-

ponenten berechnet wird.
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Dieses Resultat wollen wir gleich nochmals festhalten und auch noch etwas anders schreiben:

Die Berechnung des Vektorproduktes aus den Vektorkomponenten

Das Vektorprodukt a x b zweier Vektoren

a . by
a= a9 und b= b2
as bg

berechnet sich wie folgt aus den deren Komponenten:

asbz — azbs €1 € €3
axb= a3b1 — a163 =|ay a2 as (9.6)
arby — azby b1 by b3

Das Vektorprodukt kann also als Determinante aus den drei kartesischen Basis-
vektoren €1, €s und €3 und den Komponenten von @ und b aufgefasst werden.

Anmerkungen zur Berechnung des Vektorproduktes

e Die ausgeschriebene Determinante lautet zunachst:

€1 €y €
- g ! 2 3 = a2 as = a3z aip N ay az
axb=|a ay a3z |=¢€1- by b +e3- be b +e3- b b
2 3 3 1 1 2
bi by b3

In den Komponenten des Vektorproduktes a x b stehen somit 2x2-Determinanten aus Kom-
ponenten von @ und b.

Sind @ und 5ko||inear, so sind zwei Zeilen der Determinante bis auf einen Faktor k identisch
und somit ergibt sich automatisch 0. Der Spezialfall kollinearer Vektoren ist also abgedeckt.
Es gilt:

b=k-@ = dxb=0

Mit dem Vektorprodukt haben wir eine weitere Moglichkeit zur Berechnung von Winkeln
zwischen Vektoren erhalten. Fiir den Winkel ¢ zwischen den Vektoren @ und b gilt:
@ x b

a-b

lixb|=a-b-sing <& sing= (9.7)

Mit dieser Methode kdnnen wir allerdings nicht gut zwischen spitzen Winkeln und stumpfen
Winkeln unterscheiden. Denn fiir 0° < ¢ < 90° durchliuft sin ¢ alle Wert von 0 bis 1, wie
auch fiir 90° < ¢ < 180°.

Dennoch ist diese Winkelberechnungsmethode manchmal ganz praktisch.
Mit Abstand am h3ufigsten werden wir das Vektorprodukt dazu verwenden einen Vektor ¢ zu
berechnen, der zu zwei gegebenen Vektoren @ und b senkrecht steht.

So lasst sich z.B. aus der PD einer Ebene, die ja zwei Richtungsvektoren in der Ebene enthilt,
im Nu der Normalenvektor der Ebene und somit ihre KG bestimmen — viel schneller als bis
anhin!
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9.3 Das Spatprodukt

Definition: Der Spat ist der Kérper, der von drei Paaren paralleler Ebenen begrenzt wird.
Quader: Der Quader ist der Spezialfall eines Spats mit lauter rechteckigen Seitenflachen.

Spat und Tetraeder: Jeder Spat lasst sich in sechs volumengleiche Tetraeder zerlegen.

Diese Aussage wird in Abb. 9.3 illustriert. Zunachst kann der Spat in zwei identische Prismen
aufgeteilt werden. Diese wiederum lassen sich in je drei Tetraeder mit paarweise gleichen
Grundflachen und Hohen zerlegen.

Spatvolumen: Das Volumen eines Spats ergibt sich aus dem Produkt von Grundfliche G und
zugehoriger Hohe h (ohne Beweis):

VSpat - G . h

Gemass voriger Uberlegung (Abb. 9.3) entspricht das Spatvolumen aber auch dem Sechsfachen
eines Tetraedervolumens. Daraus l3sst sich herleiten, dass das Volumen eines Spats, der durch
drei Kantenvektoren @, b und ¢ aufgespannt wird, gegeben ist durch:

ap a2 ag
VSpat =6- VTetraeder - ‘C_i : (b X 8)| = bl b2 b3 (98)
Cc1 C2 cC3

Das Spatvolumen ist also der Betrag des sogenannten Spatprodukts @ - (5 x C), das eine
Aneinanderreihung von Vektor- und Skalarprodukt ist. Offenbar erhidlt man das Resultat dieses
Spatproduktes direkt durch Berechnung der aus @, b und ¢ gebildeten Determinante (Beweis
in den Ubungen).

Spat ES 2 Prismen = 6 Tetraeder

g6

Abbildung 9.3: Ein Spat kann in zwei volumengleiche Prismen und jedes dieser Prismen in drei volu-
mengleiche Tetraeder zerlegt werden. Der Spat besteht somit aus sechs volumengleichen Tetraedern.
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