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Kapitel 1

Vektoren im R
3

1.1 Koordinatensystem und Punkte im Raum

Zur Angabe eines Ortes resp. Punktes im dreidimensionalen Raum R
3 richten wir ein (kartesi-

sches) Koordinatensystem ein:

i. Einen bestimmten Ort1 legen wir als Ursprung (auch Nullpunkt oder Origo) O fest.

ii. In diesen Ursprung legen wir die Nullpunkte dreier senkrecht zueinander stehender Koordina-
tenachsen, die wir als x−, y und z-Achse bezeichnen. Jede Achse ist ein reeller Zahlen-
strahl, auf dem alle reellen Zahlen x ∈ R von −∞ bis +∞ vorhanden sind.

iii. Zu jedem Punkt im Raum gehört ein eindeutiges reelles Zahlentripel P (xP , yP , zP ) ∈ R
3 (vgl.

Abb. 1.1). Wir sagen: Jeder Punkt im dreidimensionalen Raum hat drei reelle Koordinaten.
Daher auch die Kurzschreibweise R

3 für den dreidimensionalen Raum.

Vom Ursprung gelange ich zum Punkt P , indem ich auf der x-Achse bis zur Stelle xP gehe,
dann senkrecht dazu in Richtung der y-Achse yP weit gehe und schliesslich nochmals senkrecht
dazu in Richtung der z-Achse die Distanz zP zurücklege.

Abbildung 1.1: Ein dreidimensionales Koordinatensystem. Punkte sind Koordinatentripel.

1In physikalischen Anwendungen entspricht der Ursprung typischerweise dem Aufenthaltsort eines Bezugsobjektes.
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1.2 Vektoren als Pfeile bzw. Verschiebungen im R
3

Sobald ich mir zwei Punkte P,Q ∈ R
3 vorgebe, kann ich fragen, wie ich vom einen zum anderen

Punkt gelange.
Die Antwort ist ein Pfeil von P nach Q, durch den eine Verschiebung von P nach Q beschrieben

wird. Diese Verschiebung bezeichnen wir als Vektor
#    –

PQ. Dabei zeigt das “Vektorpfeilchen” über
den beiden Buchstaben an, dass es sich um eine Pfeilverbindung von P nach Q handeln soll. Im
Fachjargon bezeichnet man Verschiebungen auch als Translationen.

Vektorkomponenten

Die durch den Vektor
#    –

PQ beschriebene Verschiebung von P nachQ können wir in drei hintereinander
ausgeführte Teilverschiebungen längs der Koordinatenachsen zerlegen.

Beispiel: Seien P (−1, 3, 0) und Q(3, 1, 3). In Abb. 1.2 sehen wir die Lage dieser beiden Punkte im
Koordinatensystem und den Vektorpfeil

#    –

PQ, der vom Punkt P zum Punkt Q zeigt.

Um von P nach Q zu gelangen, muss ich folglich +4 Einheitsschritte in x-Richtung, −2
Einheitsschritte in y-Richtung und +3 Einheitsschritte in z-Richtung gehen.

Abbildung 1.2: Ein Vektor im R
3 ist ein Pfeil, der als eine Verschiebung zwischen zwei Punkten

verstanden werden kann. Der Vektor von P nach Q lässt sich in drei Komponenten parallel zu den
Koordinatenachsen zerlegen.

Die Teilverschiebungen längs der Koordinatenachsen nennt man die Komponenten des Vektors
#    –

PQ. Dies führt uns auch direkt zur Komponentenschreibweise für Vektoren:

#    –

PQ =




4
−2
3




In dieser Komponentenschreibweise notieren wir allgemein für einen beliebigen Vektor ~v:

~v =




vx
vy
vz


 (1.1)

Dabei sind vx, vy und vz die Vektorkomponenten oder einfach die Komponenten von ~v.
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Gleiche Pfeile als Repräsentanten ein- und desselben Vektors

Der Vektor
#    –

PQ steht für die Verschiebung vom Punkt P zum Punkt Q, dargestellt durch einen Pfeil
von P nach Q. Ein Pfeil mit gleicher Länge und gleicher Richtung kann sich aber auch zwischen
zwei anderen Punkten R und S ergeben, wie dies in Abb. 1.3 gezeigt wird. Wir sagen: Die Pfeile
#    –

PQ und
#   –

RS sind Repräsentanten ein- und desselben Vektors. Die Verschiebung von P nach Q

entspricht derjenigen von R nach S. Es handelt sich um den gleichen Vektor:

#    –

PQ =
#   –

RS =




4
−2
3




Abbildung 1.3: Zwei Repräsentanten (Pfeile) zum selben Vektor.

Somit ist es auch sinnvoll zu sagen, dass beispielsweise eine Figur oder ein Körper um einen
bestimmten Vektor ~v verschoben wird. Das bedeutet einfach, dass jeder Punkt der Figur resp. des
Körpers mit demselben Pfeil (Richtung und Länge identisch) verschoben wird (vgl. Abb. 1.4).

Abbildung 1.4: Die Verschiebung des Körpers K um den Vektor ~v. Alle Punkte von K werden separat
um den Vektor ~v verschoben.
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1.3 Ortsvektoren

Mit dem Ursprung O legen wir im Raum einen ganz bestimmten Punkt als Ausgangspunkt für unser
Koordinatensystem fest. Alle weiteren Punkte lassen sich dann erreichen, indem ich sage, wie weit
ich von O aus in x-, in y- und in z-Richtung zu gehen habe (vgl. Abschnitt 1.1).

Folglich wird jeder Punkt P durch einen Vektor
#    –

OP beschrieben, der mir sagt, wie ich vom
Ursprung O zum Punkt P gelange. Derartige Vektoren nennen wir Ortsvektoren. Der Einfachheit
halber schreiben wir dafür nur ~P anstelle von

#    –

OP .
Die Punktkoordinaten entsprechen den Komponenten des zugehörigen Ortsvektors. So gilt bei-

spielsweise für die beiden Punkte P und Q resp. für deren Ortsvektoren ~P und ~Q (vgl. Abb. 1.5):

~P =



xP
yP
zP


 =



−1
3
0


 und ~Q =



xQ
yQ
zQ


 =




3
1
3




Damit lässt sich der Vektor
#    –

PQ von P nach Q durch eine Subtraktion von Ortsvektoren ausdrücken:

#    –

PQ = ~Q− ~P =



xQ
yQ
zQ


−



xP
yP
zP


 (∗)

=




xQ − xP
yQ − yP
zQ − zP


 =




3− (−1)
1− 3
3− 0


 =




4
−2
3




Bem.: Beim Schritt (∗) sind wir davon ausgegangen, dass die Subtraktion zweier Vektoren kompo-
nentenweise erfolgt, dass also die x-, die y- und die z-Komponenten einzeln voneinander subtrahiert
werden. Das ist tatsächlich sinnvoll so, wie wir im Kapitel 2 noch genauer sehen werden. Bereits
jetzt wollen wir uns merken:

Vektor zwischen zwei Punkten

Der Vektor
#    –

PQ vom Punkt P zum Punkt Q ist die Differenz zwischen dem
Ortsvektor ~Q des Endpunktes und dem Ortsvektor ~P des Anfangspunktes:

#    –

PQ = ~Q− ~P =




xQ − xP
yQ − yP
zQ − zP


 (1.2)

Dabei erfolgt die Subtraktion der beiden Vektoren komponentenweise.

Abbildung 1.5: Die Ortsvektoren ~P und ~Q führen vom Ursprung O zum jeweiligen Punkt. Der Vektor
#    –

PQ ist die Differenz der beiden Ortsvektoren.
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1.4 Der Betrag |~v | eines Vektors

Die Länge eines Vektors ~v ist einfach eine Zahl. Wir bezeichnen sie als den Betrag |~v | des Vektors.
In der Regel vereinfachen wir uns diese Betragsnotation, indem wir statt |~v | einfach v schreiben. Bei
Vektoren zwischen zwei Punkten, also z.B. bei

#    –

PQ, schreiben wir für den Betrag aber eher PQ.
Im R

3 ergibt sich der Betrag eines Vektors ~v durch eine doppelte Anwendung des Satzes von
Pythagoras, wie wir uns sofort am bekannten Beispiel

#    –

PQ veranschaulichen wollen.

Beispiel: Abb. 1.6 zeigt wieder den Vektor ~v =
#    –

PQ. Seine Länge entspricht der Länge der Raumdia-
gonale eines Quaders mit gegenüberliegenden Eckpunkten P und Q und Quaderkanten parallel
zu den Achsen des Koordinatensystems.

Für die Länge der Diagonale d der liegenden Seitenfläche erhalten wir:

d2 = v2x + v2y = 42 + (−2)2 = 20

Daraus ergibt sich für die Länge der Raumdiagonale resp. für den Betrag des Vektors
#    –

PQ:

PQ
2
= d2 + v2z = v2x + v2y︸ ︷︷ ︸

= d2

+ v2z = 42 + (−2)2 + 32 = 20 + 9 = 29 ⇒ PQ =
√
29

Abbildung 1.6: Die Berechnung des Vektorbetrags erfolgt durch eine doppelte Anwendung Satzes
von Pythagoras. Die Diagonale der Seitenfläche des

Wir halten allgemein fest:

Berechnung eines Vektorbetrages

Der Betrag |~v | resp. v eines Vektors ~v ist gegeben durch die Wurzel aus
der Summe über die Quadrate der Vektorkomponenten:

~v =



vx
vy
vz


 ⇒ v = |~v | =

√
v2x + v2y + v2z (1.3)
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Kapitel 2

Elementare Vektoroperationen

2.1 Vektoraddition

Unter der Addition zweier Vektoren ~a und ~b wollen wir die Verschiebung verstehen, die sich ergibt,
wenn wir die zu ~a und zu ~b gehörenden Verschiebungen hintereinander ausführen.

In Abb. 2.1 sehen wir das Resultat einer solchen Vektoraddition. Sie ist offensichtlich kom-
mutativ, denn die Reihenfolge der beiden Verschiebungen ~a und ~b spielt für den resultierenden
Verschiebungsvektor ~a+~b keine Rolle:

Kommutativität der Vektoraddition: ~a+~b = ~b+ ~a (2.1)

Abbildung 2.1: Das grafische Verständnis für die Vektorsumme ~a+~b.

Vektoren zu addieren bedeutet also die zu den einzelnen Vektoren gehörenden Pfeile an-
einanderzuhängen. Das gilt für die Summe beliebig vieler Vektoren (vgl. Abb. 2.2).

Abbildung 2.2: Der Vektor
#    –

PT ist die Summe aus den Vektoren
#    –

PQ,
#    –

QR,
#   –

RS und
#   –

ST .
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Die Vektoraddition erfolgt komponentenweise!

Die x-Komponente ax eines Vektors ~a sagt uns, um wie viel sich die x-Koordinate bei der durch ~a

beschriebenen Verschiebung verändert. Führen wir die beiden Verschiebungen ~a und ~b hintereinander
aus, addieren wir also die beiden Vektoren ~a und ~b, so wird die x-Koordinate zuerst um ax, danach
um bx geändert. Insgesamt beträgt die Veränderung somit ax + bx. Analoge Überlegungen können
wir auch für die y- und die z-Komponente anstellen.

Wir bemerken also ganz explizit und allgemein:

Ausführung der Vektoraddition

Die Addition von Vektoren erfolgt komponentenweise! D.h., die x-, die
y- und die z-Komponenten werden getrennt voneinander addiert:

~a+~b =



ax
ay
az


+



bx
by
bz


 =




ax + bx
ay + by
az + bz


 (2.2)

2.2 Skalare Multiplikation

Ein Vektor ~a im R
3 ist ein Objekt bestehend aus drei Komponenten, also aus drei reellen Zahlen. Im

Gegensatz dazu bezeichnen wir ein Objekt, zu dessen vollständiger Angabe nur eine einzelne reelle
Zahl k ∈ R notwendig ist, als Skalar.

Nun kann ich ja zum Beispiel sagen, dass ich die durch den Vektor ~a beschriebene Verschiebung
gerne sechsmal ausführen möchte. Dabei ist die Zahl k = 6 ein Skalar, der zählt, wie oft, also wie
viel mal hintereinander die Verschiebung durch den Vektor ~a erfolgen soll. Ich beschreibe hier also
die Multiplikation des Vektors ~a mit dem Skalar k = 6, denn eine solche Multiplikation mit einem
Skalar steht eben stets für die Angabe, wie oft ein bestimmtes Objekt aufaddiert werden soll.

Damit ist aber bereits klar, wie diese sogenannte skalare Multiplikation bei Vektoren zu funk-
tionieren hat, denn über die Addition wissen wir ja Bescheid:

6 · ~a = ~a+ . . .+ ~a︸ ︷︷ ︸
6-mal

=



ax
ay
az


+ . . .+



ax
ay
az




︸ ︷︷ ︸
6-mal

=




6 · ax
6 · ay
6 · az




Halten wir das allgemein fest:

Ausführung der skalaren Multiplikation

Bei der Multiplikation eines Vektors ~a mit einem Skalar k ∈ R muss jede
Vektorkomponente einzeln mit dem Skalar k multipliziert werden:

k · ~a = k ·



ax
ay
az


 =




k · ax
k · ay
k · az


 (2.3)

Offensichtlich kann die Multiplikation eines Vektors mit einem Skalar auf die Multiplikation von zwei
reellen Zahlen innerhalb der Komponenten zurückgeführt werden. Daraus folgt, dass für den Skalar
k beliebige reelle Werte eingesetzt werden dürfen, denn wir wissen, dass die Multiplikation damit
problemlos funktioniert.
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Liegt ein Vektor ~a parallel zu einer bestimmten Gerade, so gilt das auch für das Resultat k ·~a der
skalaren Multiplikation. Das verstehen wir gut, denn die Komponenten werden alle mit demselben
Faktor k multipliziert. D.h., ihr Verhältnis, das für die Ausrichtung entscheidend ist, wird dadurch
nicht verändert: ax : ay : az = (kax) : (kay) : (kaz). Für k < 0 wechselt der Vektor allerdings seine
Zeigerichtung um 180◦.

Abb. zeigt einen Vektor ~a und das Resultat einiger Multiplikationen mit verschiedenen k ∈ R.

Abbildung 2.3: Bei der skalaren Multiplikation von ~a entsteht ein zu ~a paralleler Vektor. Bei der
Multiplikation mit einer negativen Zahl dreht sich allerdings die Zeigerichtung um 180◦.

2.3 Einheitsvektoren

Oftmals ist es praktisch eine Richtung durch einen Vektor mit Länge 1 anzugeben. Solche Vektoren
mit Länge 1 nennen wir Einheitsvektoren.

Ist ein Vektor ~v gegeben, so bezeichnet ~ev den Einheitsvektor in Richtung von ~v. Ich erhalte ~ev ,
indem ich den Vektor ~v durch seinen Betrag v = |~v | dividiere resp. mit dem Kehrwert des Betrages
multipliziere (~v

v
= 1

v
· ~v ):

Einheitsvektor in Richtung von ~v: ~ev =
~v

|~v | =
~v

v
(2.4)

2.4 Die Differenz zweier Vektoren

Das Konzept des Nullvektors

Als Nullvektor ~O bezeichnen wir die Verschiebung “um nichts”. Die Komponenten des Nullvektors
sind alle gleich 0, sodass diesem Vektor keine echte Richtung zugeordnet werden kann. Den Nullvektor
kann ich zu jedem beliebigen Vektor hinzuaddieren, ohne dass sich an diesem etwas verändert:

Definition des Nullvektors ~O: ~a+ ~O = ~a (2.5)

~O ist aufgrund dieser Eigenschaft das Nullelement in der Menge aller Vektoren.
Tatsächlich benutzen wir den Nullvektor eher selten. Er ist aber dennoch ein wichtiges und

hilfreiches Element in der Menge aller Vektoren des R3, z.B. gerade bei der nächsten Überlegung. . .
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Der Gegenvektor eines Vektors

Als Gegenvektor zu einem gegebenen Vektor ~a definieren wir denjenigen Vektor ~ga, für den gilt:

~a+ ~ga = ~O

D.h., der Gegenvektor ~ga macht die Verschiebung durch ~a genau rückgängig. Die Hintereinander-
ausführung (= Summe) von ~a und ~ga soll insgesamt also den Nullvektor ergeben.

Nun wissen wir ja ganz konkret, wie Vektoren addiert werden, nämlich komponentenweise! Das
erlaubt uns sofort die Komponenten von ~ga zu identifizieren:

~a+ ~ga =



ax
ay
az


+



ga,x
ga,y
ga,z


 =




ax + ga,x
ay + ga,y
az + ga,z


 !

=




0
0
0


 ⇒ ~ga =




−ax
−ay
−az


 = −~a

Zuletzt haben wir verwendet, dass der Faktor (−1), der in jeder Komponente auftritt, vor den Vektor
gezogen werden kann (skalare Multiplikation).

Der Gegenvektor zum Vektor ~a ist also einfach dasNegative des Vektors ~a. D.h., der Gegenvektor
~ga ist gleich lang wie der Vektor ~a, zeigt aber genau in die Gegenrichtung.

Zur Differenz zweier Vektoren

Frage: Was soll man unter der Differenz ~a−~b zweier Vektoren ~a und ~b verstehen?

Antwort 1: Ist ~c = ~a − ~b das Resultat der Vektorsubtraktion, so folgt durch Addition von ~b auf
beiden Gleichungsseiten:

~c = ~a−~b ⇒ ~a = ~b+ ~c

Das Resultat der Subtraktion muss also derjenige Vektor ~c sein, der zusammen mit dem Vektor
~b den Vektor ~a ergibt. Die linke Darstellung in Abb. 2.4 verdeutlicht diese Aussage.

Wir erkennen: Die Differenz zwischen ~a und ~b ist der Vektor, der von der Pfeilspitze von ~b

zur Pfeilspitze von ~a führt, wenn ich die Pfeile für ~a und ~b vom gleichen Punkt aus starten
lasse.

Antwort 2: Die Subtraktion von ~b kann als Addition des Gegenvektors von ~b verstanden werden:

~a−~b = ~a+
(
−~b

)

Die Addition von Vektoren bedeutet das Aneinanderhängen der Vektorpfeile. ~a−~b ergibt sich
also, indem ich −~b an ~a hänge (vgl. Abb. 2.4 rechts).

Abbildung 2.4: Zweifache Veranschaulichung zur Subtraktion zweier Vektoren.
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Die Subtraktion erfolgt komponentenweise

Unsere beiden Antworten auf die Frage nach der Bedeutung der Differenz zweier Vektoren im vorigen
Abschnitt stimmen (zum Glück resp. natürlich) miteinander überein.

Antwort 1 liefert ein besonders anschauliches grafisches Verständnis für ~a − ~b, während uns
Antwort 2 sofort die Berechnung der Komponenten des Resultates dieser Vektorsubtraktion erlaubt,
weil wir ja bereits wissen, wie die Vektoraddition funktioniert:

~a−~b = ~a+
(
−~b

)
=



ax
ay
az


+



−bx
−by
−bz


 =




ax − bx
ay − by
az − bz




Das wollen wir allgemein festhalten:

Bildung einer Vektordifferenz

Die Differenz zweier Vektoren wird komponentenweise gebildet! D.h.,
die Subtraktion zwischen den x-, den y- und den z-Komponenten wird
getrennt voneinander ausgeführt:

~a−~b =



ax
ay
az


−



bx
by
bz


 =




ax − bx
ay − by
az − bz


 (2.6)

Dieses Resultat hatten wir für die Differenz zweier Ortsvektoren in Gleichung (1.2) auf Seite 4 bereits
so festgehalten!

Grafische Veranschaulichung von Vektorsumme und Vektordifferenz

Es ist wirklich wichtig ein gutes Verständnis resp. ein greifbares Bild für die Bedeutung von Addi-
tion und Subtraktion zweier Vektoren zur Verfügung zu haben. Abb. 2.5 bringt dieses Verständnis
nochmals auf den Punkt. Vektorsumme und Vektordifferenz stehen für die Diagonalen in einem
Parallelogramm, das von einem Eckpunkt aus durch zwei Vektoren ~a und ~b aufgespannt wird.

Ich empfehle sehr, dass du dir diese Grafik als Merkhilfe einprägst. Dabei ist besonders für die
Differenz wichtig zu wissen, dass ~a−~b von der Pfeilspitze von ~b zur Pfeilspitze von ~a führt.

Abbildung 2.5: Summe und Differenz zweier Vektoren auf einen Blick.
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2.5 Mittel- und Schwerpunkte

Mittelpunkt zweier Punkte

An einem ähnlichen Parallelogramm wie demjenigen in Abb. 2.5 verstehen wir unmittelbar, wie sich
der Mittelpunkt M zwischen zwei Punkten P und Q berechnen lässt. Betrachten wir dazu die linke
Seite in Abb. 2.6.

M liegt offensichtlich auf halbem Weg zur O gegenüberliegenden Parallelogrammecke. Der Orts-
vektor dieses Mittelpunktes ~M entspricht somit der Hälfte von ~P + ~Q:

~M =
~P + ~Q

2
(2.7)

Was wir vom arithmetischen Mittel m = a+b
2 zweier Zahlen a und b her bereits kennen, lässt sich

also auf den Mittelpunkt zweier Punkte P und Q übertragen. Effektiv wird bei der Mittelpunktbe-
stimmung einfach komponentenweise das arithmetische Mittel berechnet:

~M =
~P + ~Q

2
=




xP+xQ

2
yP+yQ

2
zP+zQ

2


 (2.8)

Abbildung 2.6: Der Ortsvektor ~M des Mittelpunktes zweier Punkte mit Ortsvektoren ~P und ~Q.

Den Mittelpunkt M zwischen zwei Punkten P und Q erhalten wir gemäss der rechten Seite
von Abb. 2.6 aber auch, indem wir an den Ortsvektor ~P die Hälfte des Vektors

#    –

PQ anhängen.
Überprüfen wir rechnerisch, dass wir sicher dasselbe Resultat erhalten:

~M = ~P +
1

2

#    –

PQ = ~P +
1

2

(
~Q− ~P

)
= ~P +

1

2
~Q− 1

2
~P =

1

2
~P +

1

2
~P =

~P + ~Q

2
X

Dabei haben wir verwendet, dass
#    –

PQ = ~Q− ~P . Ausserdem sind wir stillschweigend davon ausgegan-
gen, dass die skalare Multiplikation und die Vektoraddition resp. -differenz dem Distributivgesetz
gehorchen, dass also für einen Skalar k und zwei Vektoren ~a und ~b stets gilt:

k ·
(
~a+~b

)
= k · ~a+ k ·~b und k ·

(
~a−~b

)
= k · ~a− k ·~b (2.9)

Davon könnten wir uns problemlos überzeugen, indem wir ~a und~b in Komponenten aufschreiben und
die Vektoraddition resp. -differenz und auch die skalare Multiplikation explizit mit diesen Komponen-
ten gemäss den Gleichungen (2.2), (2.3) und (2.6) ausführen würden. Das ist aber eher langweilig
und bringt keine bahnbrechenden Einsichten mit sich, weshalb wir darauf verzichten wollen.
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Streckenaufteilung in ein vorgegebenes Teilstreckenverhältnis

Wir wollen die Mittelpunktsbestimmung gerade um eine Stufe erweitern. . .

Vorgabe: Es seien P und Q zwei beliebige Punkte und PQ ihre gerade Verbindungsstrecke.

Frage: Wie lässt sich PQ in einem bestimmten Zahlenverhältnis, z.B. 3 : 4, unterteilen?

Anders gefragt: Wenn wir die Ortsvektoren ~P und ~Q kennen, wie lautet dann der Ortsvektor
~R des Punktes, der die Strecke PQ im gewünschten Verhältnis unterteilt?

Wie wir zu einer Antwort gelangen, soll in einer Übungsaufgabe überlegt werden. Ich gebe hier nur
das allgemeine Resultat wieder.

Aufteilung einer Strecke in einem bestimmten Zahlenverhältnis

Sind die Endpunkte P und Q einer Strecke PQ bekannt und soll diese
Strecke in einem bestimmten Zahlenverhältnis m : n aufgeteilt werden,
so ist der Ortsvektor des Punktes R ∈ PQ gegeben durch:

~R =
n · ~P +m · ~Q

m+ n
=

n

m+ n
· ~P +

m

m+ n
· ~Q (2.10)

Der Ortsvektor ~R entspricht einer gewichteten Mittelung der beiden
Ortsvektoren ~P und ~Q mit Gewichten n und m.

Abb. 2.7 veranschaulicht dieses Resultat. Soll die Strecke PQ im Verhältnis 3 : 4 unterteilt werden
mit dem grösseren Streckenabschnitt auf der Seite von Q, so muss der Punkt P in der Mittelung
das grössere Gewicht erhalten, sodass der Punkt R eben näher bei P zu liegen kommt!

Abbildung 2.7: Das gewichtete Mittel der Ortsvektoren ~P und ~Q unterteilt die Strecke PQ im
gewünschten Verhältnis.

Schwerpunkt zweier Punktmassen

Vorgabe: Im Punkt P sitze die Masse mP , im Punkt Q die Masse mQ.

Frage: Wo haben mP und mQ ihren gemeinsamen Schwerpunkt S?

Antwort: Zunächst ist klar, dass der Schwerpunkt S auf der direkten Verbindungslinie zwischen P

und Q liegt. Denken wir uns diese Verbindungslinie als einen (masselosen) Stab, an dessen
Enden die beiden Massen mP und mQ sitzen, so können wir die Frage nach dem Schwerpunkt
umformulieren:

An welcher Stelle S muss ich den Stab stützen, damit er aufgrund der beiden Massen weder
auf die eine, noch auf die andere Seite kippt (vgl. Abb. 2.8)?
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Abbildung 2.8: Der Schwerpunkt der beiden Massen ist derjenige Punkt S, an dem der Stab gestützt
werden kann, ohne dass er auf eine der beiden Seiten kippt.

Hier hilft uns die klassische Mechanik für sogenannte starre Körper weiter. Sie lehrt uns,
dass im Gleichgewicht beide Massen gleich stark den Stab zu drehen versuchen. Dabei kommt
es einerseits auf die Massen mP und mQ an, andererseits aber auch auf die Hebelarme rP
und rQ (Distanzen zum Drehpunkt S).

Das Produkt r · m ist ein Mass für die drehende Wirkung der Masse m. Im Gleichgewicht
müssen sich diese drehenden Wirkungen aufheben, sodass folgt:

rP ·mP
!
= rQ ·mQ ⇔ rP : rQ = mQ : mP

Das bedeutet, die Strecke PQ muss für das Gleichgewicht im Verhältnis mQ : mP unterteilt
werden. Wie dies geht, haben wir aber im vorigen Abschnitt bereits gesehen! Wir setzen in
Gleichung (2.10) m = mQ und n = mP ein und erhalten:

~S =
mP · ~P +mQ · ~Q

mP +mQ
=

mP

mP +mQ
· ~P +

mQ

mP +mQ
· ~Q (2.11)

Schwerpunkte beliebig vieler Punktmassen

Dieses Resultat lässt sich auf eine beliebige Anzahl Punktmassen erweitern:

Schwerpunkt von n Punktmassen

m1, . . . ,mn seien n Punktmassen an den Orten P1, . . . , Pn resp. mit den
Ortsvektoren ~P1, . . . , ~Pn. Dann ist der Ortsvektor ~S des Schwerpunkts S

dieser n Punktmassen gegeben durch:

~S =
m1 · ~P1 + . . .+mn · ~Pn

m1 + . . .+mn
(2.12)

Der Schwerpunkt entspricht einer gewichteten Mittelung aller Ortsvektoren,
wobei die einzelnen Massen jeweils als Gewichte ihres Ortes einfliessen.
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Kapitel 3

Einschub: Der Vektorraum R
3

In Abschnitt 1.1 hatten wir den R
3 als mathematische Beschreibung des realen Raumes vorgestellt.

Jeder Ort entspricht einem mathematischen Punkt mit drei reellen Koordinaten: P (x, y, z) ∈ R
3.

Diesen als realen Raum interpretierten R
3 haben wir benutzt um Vektoren als Verschiebungen

#    –

PQ zwischen zwei Punkten P und Q zu verstehen. Wir haben gesehen: Vektoren im R
3 besitzen

drei reelle Komponenten, von der uns jede einzelne sagt, um wie viel in die jeweilige Achsenrichtung
verschoben werden soll. Auf dieser anschaulichen Vorstellung basierten auch die fundamentalen
Rechenregeln (Addition, skalare Multiplikation), die wir im Kapitel 2 kennengelernt haben.

Weiter haben wir im Abschnitt 1.3 gesehen, dass sich jeder Punkt P auch als Ortsvektor ~P ,
auffassen lässt. Der Vektor ~P beschreibt, wie ich vom Ursprung zum Punkt P gelange.

Diese bisherigen Gedanken vor Augen sollten wir uns nun nochmals fragen: Was ist denn jetzt
ganz allgemein ein Vektor? Eine Verschiebung oder ein Punkt oder was?

Die mathematisch fundierte Antwort auf diese Frage kann ich nur geben, indem ich etwas aushole
und ein wesentlich allgemeineres Konzept namens Vektorraum vorstelle. Die Antwort lautet damit
dann einfach: Vektoren sind die Elemente eines Vektorraums. Das schreit natürlich nach mehr
Erläuterung, die ich geben kann, sobald einmal sauber definiert ist, was denn ein Vektorraum ist. . .

Definition des (reellen) Vektorraums

Ein Tripel (V,+, ·) bestehend aus einer Menge V , einer Abbildung (genannt Addition)

+ : V × V −→ V

(a, b) 7−→ a+ b

und einer Abbildung (genannt skalare Multiplikation)

· : R× V −→ V

(k, a) 7−→ k · a
heisst reller Vektorraum, wenn für die Abbildungen + und · die folgenden acht
Axiome gelten:

(1) (a+ b) + c = a+ (b+ c) für alle a, b, c ∈ V .

(2) a+ b = b+ a für alle a, b ∈ V .

(3) Es gibt ein Element 0 ∈ V mit a+ 0 = a für alle a ∈ V .

(4) Zu jedem a ∈ V gibt es ein Element −a ∈ V mit a+ (−a) = 0.

(5) k · (l · a) = (k · l) · a für alle k, l ∈ R, a ∈ V .

(6) 1 · a = a für alle a ∈ V .

(7) k · (a+ b) = k · a+ k · b für alle k ∈ R, a, b ∈ V .

(8) (k + l) · a = k · a+ l · a für alle k, l ∈ R, a ∈ V .
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Erläuterungen zur Vektorraumdefinition

• Zunächst sei darauf hingewiesen, dass obige Vektorraumdefinition gar nichts Näheres darüber
sagt, was V für eine Menge ist resp. was ihre Elemente, also Vektoren wie a, b, c ∈ V

effektiv für Objekte sind. Aus diesem Grund gibt es hier auch keine Vektorpfeilchen über den
Buchstaben. Diese sind nämlich reserviert für den Fall V = R

3. Vektoren sind also im rein
mathematischen Sinne nicht “Grössen mit Betrag und Richtung”, sondern zunächst einmal
einfach Elemente eines Vektorraumes.

Das Konzept des Vektorraumes ist dazu gedacht auf ganz viele verschiedene “Dinge” an-
gewendet zu werden. Bereits ohne weitere Informationen können gewisse Eigenschaften des
allgemeinen Vektorraums untersucht und einige Zusammenhänge bewiesen werden. Diese gel-
ten dann für alle möglichen Vektorräume. Das ist das Tolle an der Sache.1

• Damit eine Menge von Elementen die Menge V eines Vektorraums sein kann, müssen auf ihr
die beiden Operationen Addition und Multiplikation so definiert sein, dass alle acht Axiome
erfüllt sind. Dabei sind die Begriffe Addition und Multiplikation zunächst einmal sehr flexibel zu
verstehen. Mittlerweile kannst du aufgrund deiner Erfahrung nachvollziehen, dass damit nicht
unbedingt die Addition oder die Multiplikation zweier Zahlen gemeint sein muss. Addition und
Multiplikation müssen einfach sinnvoll sein für die Elemente von V .

• Betrachten wir die Deklaration der Addition: + : V × V → V bedeutet, die Addition nimmt
zwei Elemente aus V und macht daraus wieder ein Element von V . D.h., aus dem Paar (a, b)
wird das Element c = a+ b gemacht, das wiederum in V liegen muss.

Analoges gilt für die skalare Multiplikation: · : R×V → V bedeutet, die skalare Multiplikation
nimmt als Skalar eine reelle Zahl k ∈ R und ein Element aus V und macht daraus wieder ein
Element von V . D.h., aus dem Paar (k, a) wird das Element b = k · a gemacht, das wiederum
in V liegen muss.

• Obige Definition ist diejenige für einen reellen Vektorraum. Damit wird einfach gesagt, dass
die Skalare, mit denen die skalare Multiplikation durchgeführt werden soll, reelle Zahlen k ∈ R

sein sollen. Man kann auch Vektorräume mit Skalaren aus anderen Zahlenmengen definieren,
aber damit wollen wir uns hier nicht weiter beschäftigen.

• Werfen wir schliesslich einen Blick auf die acht Axiome. Ein paar davon haben mit Begriffen
zu tun, die wir zum Teil sogar bereits kennen.

(1)+(2): Die Addition von Elementen des Vektorraumes muss sowohl assoziativ (1), als auch
kommutativ (2) sein.

(3)+(4): Jeder Vektorraum besitzt genau ein Nullelement 0, das durch (3) festgelegt wird.
Es wird auch als “Null” oder “Nullvektor” bezeichnet.

(4): Zu jedem Element a gibt es ein negatives Element oder eben den Gegenvektor −a.
Er ist durch (4) eindeutig festgelegt.

(5): Die skalare Multiplikation muss auf die durch (5) beschriebene Weise ebenfalls assoziativ
sein.

(6): Die Multiplikation mit der Zahl 1 lässt einen Vektor unverändert.

Achtung: Hier ist die Zahl 1 wirklich die reelle Zahl 1 ∈ R. Im Gegensatz dazu ist das
Nullelement 0 ein Element von V , also i.d.R. keine reelle Zahl.

(7)+(8): Addition und skalare Multiplikation erfüllen diese beiden Distributivgesetze.

1Im Moment ist vermutlich nicht so klar, auf wie viele Dinge das Konstrukt des Vektorraums angewendet werden

kann. Ich kann dir aber versichern: Der Vektorraum ist eines der allerwichtigsten mathematischen Objekte. Ohne

ihn wäre die Mathematik nicht das stabile Fundament für die moderne Naturwissenschaft, die im 20. Jahrhundert

entwickelt wurde.
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Unsere Verwendung des Vektorraums R
3

Nachdem nun allgemein deklariert ist, was ein Vektorraum ist, können wir uns besser darüber Ge-
danken machen, wie wir dieses Konzept verwenden.

Unsere Menge V , auf der wir unsere Vektorräume aufbauen, ist jeweils der R3, also die Menge
aller möglichen Zahlentripel (x, y, z) mit x, y, z ∈ R. Der Einfachheit halber sprechen wir vom
Vektorraum R

3, auch wenn wir ihn streng genommen mit (R3,+, ·) bezeichnen müssten. Was die
Addition und die skalare Multiplikation für Elemente des R3 standardmässig sind, ist aber dermassen
klar, dass wir es nicht jedes Mal extra zu erwähnen brauchen.

Mit der Vorgabe V = R
3 ist allerdings noch gar nichts darüber gesagt, welche Anschauung

wir mit einem einzelnen Zahlentripel (x, y, z) ∈ R
3 verbinden. Es kommen dafür im Prinzip alle

möglichen Objekte in Frage, die durch drei reelle Zahlen sinnvoll beschrieben werden können. Und
so ergeben sich eben unterschiedliche Anwendungsmöglichkeiten des Vektorraums R3, beispielsweise:

(x, y, z) ∈ R
3 =̂ Koordinaten eines Punktes P resp. Ortsvektor ~P : Wir interpretieren das

Tripel (x, y, z) ∈ R
3 als die Beschreibung eines Punktes P in einem Koordinatensystem resp.

als Ortsvektor ~P , der mich von einem vorgegebenen Ursprung O aus durch Verschiebungen
entlang dreier Achsen zu P bringt. Das Nullelement ist der Ursprung O resp. ~O.

(x, y, z) ∈ R
3 =̂ Verschiebung im Raum: Das Tripel (x, y, z) ∈ R

3 steht für die Verschiebung
eines Punktes oder eines Objektes aus vielen Punkten. Die Komponenten geben die Verschie-
bungen entlang dreier Achsen an. Hier ist das Nullelement der Nullvektor ~0.

(a, b, c) ∈ R
3 =̂ quadratische Funktion: Wir fassen die drei Zahlen a, b und c als die Koeffizi-

enten der allgemeinen quadratischen Funktion f(x) = ax2 + bx + c auf. Dadurch werden
alle möglichen quadratischen Funktionen abgedeckt – inklusive aller linearen und konstanten
Funktionen, die für a = 0 resp. a, b = 0 darin enthalten sind. Tatsächlich bildet die Menge aller
quadratischen Funktionen einen Vektorraum. Du kannst dir selber überlegen, wie wohl die Ad-
dition und die skalare Multiplikation mit quadratischen Funktionen auszusehen haben, damit
die acht Axiome erfüllt sind. Das Nullelement 0 ist hier übrigens die Nullfunktion f(x) = 0.

In der Vektorgeometrie verwenden wir eine Art Kombination der ersten beiden Beispiele. Wir sprechen
über Orte (Punkte) im Raum und über Verschiebungen zwischen diesen Punkten. Wir haben es
also mit Orts- und mit Verschiebungsvektoren zu tun. Dass beide Dinge vom Verständnis her nicht
dasselbe sind, wird klar, wenn wir an den Unterschied zwischen Orten und Strecken auf einer einzelnen
Zahlenachse denken. Eine Zahl x ist eine Stelle auf der x-Achse, währenddem eine Strecke ∆x =
x2 − x1 den Unterschied zwischen zwei solchen Stellen beschreibt. Die Strecke ist ein Abschnitt der
x-Achse! Analog dazu ist ein Verschiebungsvektor

#    –

PQ eben eine Differenz zwischen zwei Punkten
P und Q im Raum. Das haben wir ganz explizit gesehen:

#    –

PQ = ~Q− ~P .
Zum Glück ist die Gefahr nicht besonders gross, Orte und Verschiebungen miteinander zu ver-

wechseln, denn die anschauliche Vorstellung des realen, dreidimensionalen Raumes gibt in der Regel
sofort Aufschluss darüber, worüber wir gerade sprechen. Egal, ob wir nun Orts- oder Verschiebungs-
vektoren in R

3, die Addition und die skalare Multiplikation erfüllen, so wie wir sie kennengelernt
haben, auf jeden Fall die acht Axiome des Vektorraums.

Das letzte der drei Beispiele oben habe ich angefügt, damit du siehst, dass auch andere Objekte
durch die Elemente eines R3 beschrieben werden können. Auch auf diese Objekte kann das Vektor-
raumkonzept angewendet werden und alles, was allgemein für Vektorräume überlegt und bewiesen
werden kann, gilt auch für solche Anwendungen!

Schliesslich sei noch angemerkt, dass wir ab und zu auch den Vektorraum R
2 mit Paaren

(x, y) resp. Vektoren
(
x
y

)
als Elemente betrachten. Diesen bringen wir typischerweise mit einem

x-y-Koordinatensystem in Verbindung. Vektoren stehen für Punkte oder Verschiebungen stehen und
wir notieren sie ebenfalls mit einem Vektorpfeilchen. Der R2 kann stets als Einschränkung des R

3

auf Punkte resp. Vektoren mit z-Koordinate resp. -Komponente 0 aufgefasst werden.
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Kapitel 4

Lineare Unabhängigkeit
und Basen des R

3

4.1 Kollinearität – lineare Abhängigkeit zweier Vektoren

Zwei Vektoren ~u,~v ∈ R
3 heissen kollinear resp. linear abhängig, wenn es einen Skalar k ∈ R gibt,

sodass:
~v = k · ~u (4.1)

• Geometrisch bedeutet Kollinearität resp. lineare Abhängigkeit zweier Vektoren also, dass
beide parallel oder antiparallel zueinander ausgerichtet sind. Schliesslich ist ~v das Resultat aus
der skalaren Multiplikation von ~u mit k und steht somit eben genau parallel oder antiparallel
zu ~u (vgl. Abschnitt 2.2).

• Zwei Vektoren sind nicht-kollinear resp. linear unabhängig, wenn es keinen Skalar k gibt,
für den (4.1) zutrifft.

• Gilt (4.1) für den Vektor ~v, so natürlich auch ~u = l ·~v mit l = 1
k
∈ R. Die lineare Abhängigkeit

resp. Kollinearität ist also stets eine Aussage, die beide Vektoren umfasst. Wenn ~v kollinear zu
~u ist, dann ist eben auch ~u kollinear zu ~v. Daher unterscheiden wir diese Fälle auch gar nicht
voneinander, sondern sagen einfach: ~u und ~v sind kollinear.

4.2 Komplanarität – lineare Abhängigkeit dreier Vektoren

Drei paarweise nicht-kollineare Vektoren ~u,~v, ~w ∈ R
3 heissen komplanar resp. linear abhängig,

wenn es zwei Skalare m,n ∈ R gibt, sodass:

~w = m · ~u+ n · ~v (4.2)

• Gleichung (4.2) besagt, dass der Vektor ~w eine sogenannte Linearkombination der beiden
Vektoren ~u und ~v ist. Das bedeutet: ~w ist eine Summe über skalare Vielfache von ~u und ~v.

Der Begriff Linearkombination ist von grosser Bedeutung für die gesamte Mathematik. Merke
ihn dir gut!

• Komplanarität resp. lineare Abhängigkeit dreier Vektoren bezeichnet den geometrischen
Umstand, dass drei Vektoren bezüglich ihren Ausrichtungen in ein- und derselben Ebene liegen.

Genauer: Lassen wir alle drei Vektorpfeile im Ursprung O beginnen, so liegt die Spitze von
~w in der Ebene, die von ~u und ~v aufgespannt wird. Abb. 4.1 oben auf der folgenden Seite
veranschaulicht diese Aussage.
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Abbildung 4.1: Drei komplanare Vektoren. Jeder der drei Vektoren ~u, ~v und ~w lässt sich als Summe
von Vielfachen der anderen beiden Vektoren ausdrücken.

• Die Komplanarität umfasst als Aussage stets drei Vektoren. Sind drei paarweise nicht-kollineare
Vektoren komplanar, so ist jeder einzelne eine Linearkombination der beiden anderen. Das
wollen wir uns am Beispiel von Abb. 4.1 auch rechnerisch verdeutlichen.

Beispiel: In Abb. 4.1 wird ein Vektor ~w gezeigt, der sich wie folgt als Linearkombination der
beiden Vektoren ~u und ~v schreiben lässt:

~w =
5

2
· ~u+ 3 · ~v

Diese Gleichung lässt sich aber ebenso gut nach ~u oder ~v auflösen:

~u =
2

5
· ~w − 6

5
· ~v und ~v =

1

3
· ~w − 5

6
· ~v

• Bei obiger Definition der Komplanarität haben wir gefordert, dass die drei Vektoren ~u, ~v und
~w paarweise linear unabhängig sind. Allerdings sind ~u, ~v und ~w auch dann komplanar, wenn
zwei oder oder sogar drei von ihnen kollinear sind. Dann kann man sie nämlich automatisch
in ein- und dieselbe Ebene legen.

~w kann in einem solchen Fall aber nicht unbedingt als Linearkombination von ~u und ~v ge-
schrieben werden. Sind nämlich ~u und ~v kollinear, aber ~u und ~w sind linear unabhängig, dann
gibt es keine zwei Skalare m,n ∈ R, die Gleichung (4.2) erfüllen würden.

Gleichung (4.1) ist also nur für drei paarweise nicht-kollineare Vektoren das harte Kriterium
für die Komplanarität. Im Prinzip kann man aber vorher überprüfen, ob von den drei Vektoren
zwei kollinear sind. Ist dies der Fall, so ist die Komplanarität automatisch auch erfüllt.
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Überprüfung der Komplanarität in einem Beispiel

Betrachten wir zur Verdeutlichung drei ganz konkrete Vektoren, um mitzubekommen, wie Kompla-
narität aussieht, wenn man sie antrifft. Gegeben seien also die drei folgenden Vektoren:

~u =




4
8
4


 ~v =




1
3
−2


 ~w =




0
−2
6




Zuerst stellen wir fest, dass keine zwei dieser drei Vektoren kollinear sind. Das sieht man wirklich
ganz unmittelbar, insbesondere wenn man rasch über die x-Komponenten nachdenkt. . .

Nun setzen wir Gleichung (4.2) an, um die Skalare m und n zu bestimmen:

m · ~u+ n · ~v = ~w ⇒ m ·




4
8
4


+ n ·




1
3
−2


 =




0
−2
6




Diese Gleichung entspricht eigentlich einem linearen Gleichungssystem mit drei Gleichungen in den
Unbekannten m und n:

∣∣∣∣∣∣

4m+ n = 0
8m+ 3n = −2
4m− 2n = 6

∣∣∣∣∣∣

Gleichungssysteme mit drei linearen Gleichungen hatten wir schon früher gesehen, allerdings hatten
wir damals festgestellt, dass drei Gleichungen braucht, um drei Unbekannte eindeutig festzulegen.
Nun haben wir drei Gleichungen, aber nur zwei Unbekannte. Das Gleichungssystem ist folglich
überbestimmt und es ist quasi Zufall, wenn die eindeutigen Werte fürm und n, die wir beispielsweise
aus den ersten beiden Gleichungen erhalten können, auch noch die dritte Gleichung erfüllen.

Das überrascht uns nicht, denn es ist ja sicher nicht der Normalfall, dass ein beliebig ausgewählter
dritter Vektor ~w in derselben Ebene liegt wie die ersten beiden Vektoren ~u und ~v.

Lösen wir nun also zuerst das lineare 2x2-Gleichungssystem bestehend aus den oberen beiden
Gleichungen, um je einen Wert für m und für n festzulegen:

∣∣∣∣
4m+ n = 0

8m+ 3n = −2

∣∣∣∣ ⇒
∣∣∣∣
−8m− 2n = 0
8m+ 3n = −2

∣∣∣∣ ⇒ n = −2 ⇒ m =
1

2

Sollen die drei Vektoren komplanar sein, so müssen diese Werte für m und n im anfänglichen
Gleichungssystem nun auch die unterste Gleichung erfüllen. Das überprüfen wir:

4m− 2n = 4 · 1
2
− 2 · (−2) = 2 + 4 = 6 X

Damit haben wir gezeigt, dass die drei Vektoren tatsächlich komplanar sind.

Vektoren in allgemeiner Lage

An dieser Stelle wollen wir noch kurz festhalten:
Drei zufällig ausgesuchte Vektoren des R3 sind weder paarweise kollinear, noch sind sie kompla-

nar. Genau solche nicht speziell aufeinander abgestimmte Vektoren meinen wir in Zukunft, wenn wir
von zwei oder drei Vektoren in allgemeiner Lage sprechen. Zwei oder drei Vektoren in allgemeiner
Lage sollen also stets linear unabhängig voneinander sein.
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4.3 Basen des R
3

Vorgabe: Gegeben seien drei von ~0 verschiedene, linear unabhängige, also nicht-komplanare Vek-
toren ~a,~b,~c ∈ R

3.

Aussage: Jeder beliebige Vektor ~v ∈ R
3 kann als eindeutige Linearkombination von ~a, ~b und ~c

geschrieben werden. Das bedeutet, die Gleichung resp. das Gleichungssystem

~v = r · ~a+ s ·~b+ t · ~c resp.

∣∣∣∣∣∣

vx = r · ax + s · bx + t · cx
vy = r · ay + s · by + t · cy
vz = r · az + s · bz + t · cz

∣∣∣∣∣∣
(4.3)

hat eine eindeutige Lösung (r, s, t).

“Beweis”: Man kann zeigen, dass diese Aussage direkt aus der linearen Unabhängigkeit von ~a, ~b
und ~c folgt, was wir zu einem späteren Zeitpunkt nachholen werden. Uns reicht an dieser Stelle
vorerst eine Plausibilitätsbetrachtung, die in Abb. 4.2 veranschaulicht wird:

Fassen wir ~a, ~b und ~c als drei Ortsvektoren auf, so liegen der Ursprung O, der Punkt A

und der Punkt B in einer bestimmten Ebene E, nicht aber der Punkt C, denn ~a, ~b und ~c

sind ja gemäss Voraussetzung nicht-komplanar. Mit den Vektoren ~a und ~b lässt sich folglich
jeder beliebigen Punkt P ∈ E erreichen, aber keine Punkt ausserhalb von E. Dazu wird der
Vektor ~c benötigt. Anschaulich gibt es genau einen Punkt P ∈ E, von dem aus ich mit
dem Vektor ~c zum Punkt V gelangen kann. Dazu braucht es ein bestimmtes Vielfaches t · ~c
des Vektors ~c. Genauso gehört zum Punkt P gehört eine ganz bestimmte Linearkombination
r ·~a+ s ·~b der Vektoren ~a und ~b. Das bedeutet aber, zum Ortsvektor ~v gehört die eindeutige
Linearkombination ~v = r · ~a+ s ·~b+ t · ~c.

Basis: Halten wir nochmals fest: Jeder beliebige Vektor ~v ∈ R
3 kann mit (4.3) als eindeutige

Linearkombination dreier linear unabhängiger Vektoren ~a,~b,~c ∈ R geschrieben werden.

Aus diesem Grund bezeichnen wir jedes linear unabhängige Tripel B(~a,~b,~c ) als Basis des R3.

Abbildung 4.2: Der Ortsvektor ~v ist eine eindeutige Linearkombination der drei Vektoren ~a, ~b und ~c.
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Beispiel: Beschreibung eines Vektors in einer neuen Basis

Zur Veranschaulichung gebe ich mir drei linear unabhängige Vektoren ~a,~b und ~c vor, die ich als neue
Basis B(~a,~b,~c ) des R3 auffassen möchte:

~a =




3
1
−1


 ~b =




2
0
3


 ~c =




1
7
1




Nun möchte ich einen bestimmten Vektor ~v in dieser neuen Basis B ausdrücken:

~v =




7
−5
0


 !

= r · ~a+ s ·~b+ t · ~c ⇔

∣∣∣∣∣∣

3r + 2s + t = 7
r + 0s+ 7t = −5
−r + 3s+ t = 0

∣∣∣∣∣∣
⇔

∣∣∣∣∣∣

3r + 2s+ t = 7
r = −5− 7t

−r + 3s + t = 0

∣∣∣∣∣∣

①

②

③

② in ① und ③:

∣∣∣∣
3(−5− 7t) + 2s+ t = 7

5 + 7t+ 3s+ t = 0

∣∣∣∣ ⇔
∣∣∣∣
s = 11 + 10t
3s+ 8t = −5

∣∣∣∣
④

⑤

④ in ⑤: 3(11 + 10t) + 8t = −5 ⇔ 38t = −38 ⇔ t = −1

in ④ und in ②: s = 11− 10 ⇔ s = 1 und r = −5 + 7 ⇔ r = 2

Damit hat der Vektor ~v in der Basis B die Komponenten 2, 1 und −1. Man kann also schreiben:

~v =




x

y

z


 =




7
−5
0


 =




2
1
−1




B

=




r

s

t




B

Dabei bringt der Index B zum Ausdruck, dass es sich um eine Angabe bezüglich der Basis B handelt.

Orthogonalität und Normiertheit

Von einer Basis werden manchmal zusätzliche Eigenschaften verlangt. Die beiden wichtigsten sind:

Orthogonalität: Stehen die drei Basisvektoren ~a, ~b und ~c senkrecht zueinander, so sagen wir, sie
sind orthogonal und B(~a,~b,~c ) ist eine orthogonale Basis.

Normiertheit: Haben die drei Basisvektoren ~a, ~b und ~c je den Betrag 1, handelt es sich also um
Einheitsvektoren, so sagen wir, sie sind normiert und B(~a,~b,~c ) ist eine normierte Basis.

Eine Basis, die gleichzeitig orthogonal und normiert ist, wird auch als Orthonormalbasis bezeichnet.

Die Standardbasis (kartesische Basis)

Vielleicht ist dir nun bereits durch den Kopf gegangen, dass wir seit dem Start der Vektorgeometrie
sämtliche Vektoren bezüglich einer ganz bestimmten Basis notieren. Dabei handelt es sich um die
sogenannte Standardbasis des R3 mit den Basisvektoren

~ex =




1
0
0


 ~ey =




0
1
0


 ~ez =




0
0
1


 sodass: ~v =




x

y

z


 = x~ex + y ~ey + z ~ez (4.4)

Die Standardbasis ist offensichtlich eine Orthonormalbasis. Ohne weitere Angaben notieren wir alle
Vektoren bezüglich dieser Standardbasis.

Ganz analog gibt es eine Standardbasis für den R
2:

~ex =

(
1

0

)
~ey =

(
0

1

)
(4.5)
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Kapitel 5

Das Skalarprodukt

5.1 Die Anwendung des Cosinussatzes auf ein Vektordreieck

Wir wollen in diesem Kapitel erfahren, wie die Winkelberechnung zwischen zwei Vektoren funktio-
niert. Als Vorüberlegung dazu holen wir zunächst den Cosinussatz aus unserem mathematischen
Fundus und betrachten damit die Situation in Abb. 5.1.

Abbildung 5.1: Der Cosinussatz angewendet auf zwei Vektoren ~a und ~b und ihre Differenz ~b− ~a.

Der Cosinussatz verbindet die Seitenlängen eines Dreiecks mit einem Winkel. In der Vektorgeo-
metrie sollte uns dies ermöglichen aus Vektorbeträgen auf Winkel zu schliessen.

In Abb. 5.1 ist rechts bereits der Cosinussatz für die Vektorbeträge |~a |, |~b | und |~b−~a | und den
Winkel ϕ zwischen den Vektoren ~a und ~b notiert. Die Vektorbeträge entsprechen den Seitenlängen
des Dreiecks links. Mit a = |~a | und b = |~b | notieren wir diesen Cosinussatz gleich nochmals:

|~b− ~a |2 = a2 + b2 − 2ab · cosϕ (5.1)

Nun lassen sich die Betragsquadrate a2 und b2 bekanntlich einfach durch die Vektorkomponenten
ausdrücken:

a2 = a2x + a2y + a2z und b2 = b2x + b2y + b2z (5.2)

Ebenso kann |~b− ~a |2 auf die Vektorkomponenten von ~a und ~b zurückgeführt werden:

|~b− ~a |2 =

∣∣∣∣∣∣




bx − ax
by − ay
bz − az



∣∣∣∣∣∣

2

= (bx − ax)
2 + (by − ay)

2 + (bz − az)
2

= b2x − 2axbx + a2x + b2y − 2ayby + a2y + b2z − 2azbz + a2z

= a2x + a2y + a2z︸ ︷︷ ︸
=a2

+ b2x + b2y + b2z︸ ︷︷ ︸
= b2

− 2axbx − 2ayby − 2azbz

= a2 + b2 − 2(axbx + ayby + azbz) (5.3)
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Setzen wir (5.3) auf der linken Seite in den Cosinussatz (5.1) ein, so streichen sich die Betrags-
quadrate auf beiden Gleichungsseiten heraus und wir erhalten eine ganz neue Beziehung:

|~b− ~a |2 = a2 + b2 − 2ab · cosϕ | (5.3) einsetzen

⇒ a2 + b2 − 2(axbx + ayby + azbz) = a2 + b2 − 2ab · cosϕ | − a2 − b2

⇔ −2(axbx + ayby + azbz) = −2ab · cosϕ | : (−2)

⇔ axbx + ayby + azbz = ab · cosϕ (5.4)

Damit haben wir direkt vor Augen, wie sich der Winkel ϕ zwischen den beiden Vektoren ~a und ~b

berechnen lässt. Wir brauchen (5.4) nur noch nach ϕ aufzulösen:

ab · cosϕ = axbx + ayby + azbz | : (ab)

⇒ cosϕ =
axbx + ayby + azbz

ab
| arccos (. . .)

⇔ ϕ = arccos
axbx + ayby + azbz

ab
(5.5)

Zur Winkelbestimmung werden die Vektorbeträge a und b benötigt und im Zähler von (5.5) muss
eine Summe über die Produkte der einzelnen Vektorkomponenten von ~a und ~b gebildet werden.

That’s it! Wir mussten zu unserer bisherigen Vektorgeometrie lediglich den Cosinussatz hin-
zufügen und schon sind wir in der Lage Winkel zwischen Vektoren zu bestimmen.

An dieser Stelle verzichte ich auf ein Rechenbeispiel. Es wird im übernächsten Abschnitt folgen.

5.2 Die Definition des Skalarproduktes

Die Winkelberechnung im vorigen Abschnitt enthielt mit axbx + ayby + azbz einen Ausdruck, der
sich bei näherer Betrachtung als besonders wichtig erweist, wie wir in Kürze sehen werden. Er ist
das Resultat der komponentenweisen Multiplikation zweier Vektoren ~a und ~b, wobei über die so
entstehenden Produkte summiert wird. Wir definieren:

Das Skalarprodukt zweier Vektoren

Unter dem Skalarprodukt ~a · ~b zweier Vektoren ~a,~b ∈ R
3 verstehen wir die

Abbildung:

· : R
3 × R

3 −→ R (5.6)
(
~a,~b

)
7−→ ~a ·~b := axbx + ayby + azbz

Die beiden Vektoren werden also komponentenweise miteinander multipliziert
und anschliessend werden die drei Produkte addiert.

Ganz analog dazu definieren wir das Skalarprodukt für zwei Vektoren ~a,~b ∈ R
2

wie folgt:

· : R
2 × R

2 −→ R (5.7)
(
~a,~b

)
7−→ ~a ·~b := axbx + ayby

Egal ob im R
2 oder im R

3, die Eigenschaften der Skalarprodukte sind dieselben.
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Anmerkungen zur Definition des Skalarproduktes

• Das Skalarprodukt heisst so, weil eine Art Produkt zweier Vektoren berechnet wird, das Re-
sultat aber ein Skalar, also eine einzelne reelle Zahl ist.

• Bei den beiden Definitionen (5.6) und (5.7) siehst du in der ersten Zeile jeweils die Mengen-
deklarationen. Dabei bedeutet R3 ×R

3 → R, dass aus zwei Elementen des R3, also eben aus
einem Paar (~a,~b ) von Vektoren, ein Element in R, also eine reelle Zahl, gemacht wird.

• Zunächst mag es irritierend erscheinen, dass wir zur Notation des Skalarproduktes dasselbe
Multiplikationszeichen · wie bei der altbekannten Multiplikation zweier Zahlen oder der skalaren
Multiplikation einer Zahl mit einem Vektor verwenden. Das soll uns aber nicht irritieren. Wir
sind erfahren genug, dass wir in jeder Situation jeweils erkennen, ob eben zwei Zahlen, eine
Zahl und ein Vektor, oder nun neuerdings zwei Vektoren miteinander multipliziert werden.1

Die folgenden drei Ausdrücke meinen also grundverschiedene Arten der Multiplikation, einfach
weil nicht dieselbe Kombination von Elementen in die Rechnung hineingegeben wird:

3 · 5 = 15 4 ·



−1
3
2


 =



−4
12
8







3
0
2


 ·



−1
3
2


 = −3 + 0 + 4 = 1

R× R → R R× R
3 → R

3
R
3 × R

3 → R

Multiplikation Skalare Multiplikation Skalarprodukt
zweier Skalare eines Vektors zweier Vektoren

Im Kapitel 9 werden wir mit dem Vektorprodukt noch eine weitere Art der Vektormultiplika-
tion kennenlernen. Zu dessen Darstellung führen wir dann effektiv ein neues Zeichen ein.

5.3 Winkelberechnung mit dem Skalarprodukt

Mit der Notation des Skalarproduktes schreiben wir (5.5) für die Berechnung eines Winkels zwischen
zwei Vektoren nun nochmals neu:

Der Zwischenwinkel zweier Vektoren

Der Winkel ϕ zwischen zwei Vektoren ~a und ~b berechnet sich folgendermassen:

cosϕ =
~a ·~b
a · b resp. ϕ = arccos

~a ·~b
a · b (5.8)

Dabei stehen a und b für die Vektorbeträge.

Erste Anmerkungen zur Berechnung des Zwischenwinkels zweier Vektoren

• Der Winkel zwischen zwei Vektoren liegt stets im Intervall [0◦; 180◦]. Das verträgt sich bestens
mit der Arcuscosinus-Funktion, denn dies ist eine eindeutige Abbildung [−1; 1] → [0◦; 180◦].

• In der Vektorgeometrie arbeiten wir in der Regel mit dem Gradmass (◦). Achte darauf, dass
dein Taschenrechner auf dieses Winkelmass eingestellt ist (DEG und nicht etwa RAD).2

1Anmerkung: Tatsächlich gibt es Lehrbücher, die für das Skalarprodukt eigene Zeichen einführen, z.B. • oder ◦. Die

meisten kommen allerdings ohne ein spezielles Zeichen aus und auf Stufe Hochschule wird gänzlich darauf verzichtet.
2Ja, diese Winkelberechnung mit dem Skalarprodukt ist eine der wenigen Rechnungen, bei denen die Verwendung

eines TRs in der Mathe erlaubt ist!
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Drei Beispiele zur Winkelberechnung

Beispiel 1: Hier zwei Vektoren im R
3:

~a =




−2
3
1


 und ~b =




2
1
−6




Die Beträge der beiden Vektoren ergeben sich zu:

a =
√

22 + 32 + 12 =
√
14 und b =

√
22 + 12 + 62 =

√
41

Somit erhalten wir für den Winkel zwischen diesen beiden Vektoren:

ϕ = arccos
~a ·~b
a · b = arccos

(−2) · 2 + 3 · 1 + 1 · (−6)√
14 ·

√
41

= arccos
−7√
14 · 41

≈ 107.0◦

Beispiel 2: Schauen wir uns zwei zweidimensionale Vektoren an:

~a =

(−3

−4

)
und ~b =

(−12

5

)
mit a =

√
32 + 42 = 5 und b =

√
122 + 52 = 13

Für den Winkel zwischen den beiden Vektoren folgt daraus:

ϕ = arccos
~a ·~b
a · b = arccos

(−3) · (−12)− 4 · 5
5 · 13 = arccos

16

5 · 13 ≈ 75.7◦

Bemerke: Mit Vektoren ∈ R
2 funktioniert die Winkelberechnung tatsächlich ganz genau

gleich. Das liegt daran, dass wir unsere anfängliche Überlegung mit dem Cosinussatz ebenso
gut mit zweidimensionalen Vektoren hätten anstellen können und dabei eben dasselbe Resultat
mit dem Skalarprodukt für Vektoren ∈ R

2 erhalten hätten.

Beispiel 3: Betrachten wir nochmals zwei Vektoren im R
3:

~a =




√
3
1

−2
√
3


 und ~b =




−
√
3

7

−2
√
3




Daraus folgt zunächst die Berechnung der Beträge:

a =
√
3 + 1 + 12 =

√
16 = 4 und b =

√
3 + 49 + 12 =

√
64 = 8

Schliesslich erhalten wir für den Winkel zwischen den beiden Vektoren:

ϕ = arccos
−(

√
3 )2 + 7 + (−2

√
3 )2

4 · 8 = arccos
−3 + 7 + 12

4 · 8 = arccos
1

2
= 60◦

Hier hat sich ein exakter Cosinuswert ergeben. Der Winkel beträgt folglich genau 60◦.

Zur Erinnerung seien kurz die exakten Werte der Cosinusfunktion tabelliert:

Winkel ϕ 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦

cosϕ 1
√
3
2

√
2
2

1
2 0 −1

2 −
√
2
2 −

√
3
2 −1
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5.4 Orthogonalitätsnachweis – ein Leichtes mit dem Skalarprodukt!

Werfen wir nochmals einen genaueren Blick auf die Winkelberechnung. Multiplizieren wir die Glei-
chung (5.8) mit den beiden Beträgen a und b, so folgt:

~a ·~b = a · b · cosϕ (5.9)

Da die Beträge a und b positiv sind, resultiert aus dieser Gleichung eine einfache Fallunterscheidung:

Spitze Winkel: 0◦ ≤ ϕ < 90◦ ⇔ cosϕ > 0 ⇔ ~a ·~b > 0

Rechter Winkel: ϕ = 90◦ ⇔ cosϕ = 0 ⇔ ~a ·~b = 0

Stumpfe Winkel: 90◦ < ϕ ≤ 180◦ ⇔ cosϕ < 0 ⇔ ~a ·~b < 0

Das Vorzeichen des Skalarproduktes sagt uns also ganz direkt, wie die beiden Vektoren tendentiell
relativ zueinander ausgerichtet sind. Insbesondere der mittlere Fall ist hervorzuheben!

Orthogonalität zweier Vektoren

Zwei Vektoren ~a,~b 6= ~0 stehen genau dann senkrecht resp. orthogonal
zueinander, wenn ihr Skalarprodukt ~a ·~b verschwindet:

~a ⊥ ~b ⇔ ~a ·~b = 0 (5.10)

Es ist also wirklich sehr einfach festzustellen, ob zwei Vektoren senkrecht
zueinander stehen!

5.5 Das Skalarprodukt mit Einheitsvektoren

Wir betrachten zwei Einheitsvektoren ~ea und ~eb. Da sie beide den Betrag 1 aufweisen, folgt für ihr
Skalarprodukt aus Gleichung (5.9) sofort:

~ea · ~eb = cosϕ (5.11)

Das Skalarprodukt zweier Einheitsvektoren liefert also direkt den Cosinus des Winkels zwischen
den Einheitsvektoren! Diese Aussage ist übrigens bereits in der Winkelberechnungsgleichung (5.8)
sichtbar enthalten, denn:

cosϕ =
~a ·~b
a · b =

~a

a
·
~b

b
= ~ea · ~eb mit ~ea =

~a

a
und ~eb =

~b

b

5.6 Hintergründige Eigenschaften des Skalarproduktes

Zum Kapitelende sollen weitere grundlegende Eigenschaften des Skalarproduktes benannt werden.
Wir werden diese Eigenschaften resp. Rechenregeln für das Skalarprodukt selten ganz bewusst und
explizit verwenden. Sie sind aber enorm wichtig für ein “geregeltes Verhalten” des Skalarprodukts,
also dafür, dass wir damit relativ intuitiv umgehen dürfen und es schon seine Richtigkeit hat.

Kommutativität resp. Symmetrie: Das Skalarprodukt ist symmetrisch bezüglich der beiden Vek-
toren ~a und ~b. Es ist also eine kommutative Operation:

~a ·~b = ~b · ~a (5.12)

Dies folgt sofort aus der Kommutativität der Multiplikation zweier Zahlen:

~a ·~b = axbx + ayby + azbz = bxax + byay + bzaz = ~b · ~a
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Betrag eines Vektors und positive Definitheit: Das Skalarprodukt eines Vektors ~a mit sich sel-
ber ergibt das Betragsquadrat des Vektors:

~a · ~a = axax + ayay + azaz = a2x + a2y + a2z = a2 (5.13)

Damit kann der Betrag eines Vektors neu via Skalarprodukt definiert werden:

a = |~a | :=
√
~a · ~a (5.14)

Aus (5.13) folgt zudem die positive Definitheit des Skalarproduktes, dass also gilt:

~a · ~a ≥ 0 für alle ~a ∈ R
3 (5.15)

Gleich 0 wird das Skalarprodukt nur für den Nullvektor ~0.

Betrag des Skalarproduktes: Aus Gleichung (5.9) folgt für den Betrag jedes Skalarproduktes:

∣∣~a ·~b
∣∣ = |a · b · cosϕ| = a · b · | cosϕ|

Der Cosinus ist allerdings eine beschränkte Funktion: −1 ≤ cosϕ ≤ 1. Also: | cosϕ| ≤ 1. Und
somit folgt für den Betrag des Skalarproduktes:

∣∣~a ·~b
∣∣ ≤ a · b für alle ~a,~b ∈ R

3 (5.16)

Der Betrag des Skalarprodukts zweier Vektoren ist niemals grösser als das Produkt der Beträge
beider Vektoren.

Linearität resp. Bilinearität: Multipliziere ich einen der beiden Vektoren ~a oder ~b mit einem Skalar
k ∈ R, so wird dadurch auch der Wert des Skalarproduktes um den Faktor k vergrössert:

(k · ~a ) ·~b = k ·
(
~a ·~b

)
und ~a ·

(
k ·~b

)
= k ·

(
~a ·~b

)
(5.17)

Diese Eigenschaft bezeichnet man als Linearität resp., weil sie für beide Argumente des Skalar-
produktes gilt, als Bilinearität des Skalarproduktes. Sie folgt sofort aus dem Distributivgesetz
für reelle Zahlen:

(k · ~a ) ·~b = k · axbx + k · ayby + k · azbz = k · (axbx + ayby + azbz) = k ·
(
~a ·~b

)

Distributivität: Für das Skalarprodukt gibt es ein Distributivgesetz. Für beliebige drei Vektoren
~a,~b,~c ∈ R

3 gilt:
~a ·

(
~b+ ~c

)
= ~a ·~b+ ~a · ~c (5.18)

Dies lässt sich auf das Distributivgesetz und die Kommutativität der Addition der reellen
Zahlen zurückführen:

~a ·
(
~b+ ~c

)
= ax(bx + cx) + ay(by + cy) + az(bz + cz)

= axbx + axcx + ayby + aycy + azbz + azcz

= axbx + ayby + azbz + axcx + aycy + azcz = ~a ·~b+ ~a · ~c
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Kapitel 6

Parameterdarstellungen von Geraden
und Ebenen

Bis anhin beschränkten sich unsere Betrachtungen im dreidimensionalen Raum im Wesentlichen auf
einzelne Punkte und Verschiebungen zwischen diesen. Nun wollen wir beginnen ausgedehnte geome-
trische Orte, also Punktmengen zu studieren. Dies sind zunächst unendlich ausgedehnte Geraden
und Ebenen, zu deren Beschreibung im Raum wir Vektoren verwenden werden. Dazu lernen wir eine
ganz Schreibweise kennen und benutzen, die sich Parameterdarstellung nennt. Dabei erreichen wir
alle Punkte der Gerade oder Ebene, indem wir einen resp. zwei reelle Parameter variieren.

6.1 Die Parameterdarstellung der Gerade im R
3

Betrachten wir eine in beide Richtungen unendlich lange Gerade g im Raum (vgl. Abb. 6.1). Sie darf
beliebig in unserem dreidimensionalen Koordinatensystem liegen.

Abbildung 6.1: Vektoren zur Parameterdarstellung einer Geraden: Es braucht einen Aufpunkt A resp.
einen Aufvektor ~A und einen Richtungsvektor ~v.
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Richtungsvektor ~v: Egal welche beiden Punkte P und Q auf der Gerade g wir herauspicken, der
Vektor ~v = ~Q − ~P wird bis auf einen skalaren Faktor immer derselbe sein. Jeden solchen
Vektor bezeichnen wir als Richtungsvektor ~v der Gerade g, denn jeder von ihnen beschreibt
die Raumrichtung, längs der die Gerade ausgerichtet ist. Alle Richtungsvektoren zu einer be-
stimmten Gerade g sind kollinear!

Aufpunkt A und Aufvektor ~A: Von jedem beliebigen Punkt A auf der Gerade lässt sich mittels
eines Richtungsvektors ~v jeder beliebige andere Punkt P auf der Gerade erreichen, indem wir
uns von A aus um ein bestimmtes Vielfaches t · ~v mit t ∈ R verschieben.

Den Punkt A bezeichnen wir als Aufpunkt, den zugehörigen Ortsvektor ~A als Aufvektor.
“Mittels ~A springen wir vom Ursprung aus auf die Gerade g.”

Die Parameterdarstellung (PD) einer Gerade

Jede Gerade g im Raum kann durch eine Parameterdarstellung – kurz: PD –
beschrieben werden:

~Pg(t) = ~A+ t · ~v mit t ∈ R (6.1)

Die PD enthält die Ortsvektoren ~P sämtlicher Punkte P ∈ g, wobei zu jedem P

ein ganz bestimmter Wert des Parameters t gehört.

Zur Beschreibung einer Geraden im Raum wird also ein Aufvektor ~A und ein
Richtungsvektor ~v benötigt, mit denen sich die PD notieren lässt.

Anmerkungen zur Parameterdarstellung der Gerade

Schreibweise ~Pg(t) = ~A + t · ~v : Bei gegebenen ~A und ~v fassen wir jeden Punkt P ∈ g als

Funktion des Parameters t auf. Daher schreiben wir ~Pg(t), wobei der Index g zum Ausdruck
bringt, dass hier alle Punkte auf der Gerade g beschrieben werden.

Beispiel: Abb. 6.2 veranschaulicht, dass der Ortsvektor ~R zum Punkt R ∈ g als Vektorsumme des
Aufvektors ~A und eines Vielfachen des Richtungsvektors ~v geschrieben werden kann.

Abbildung 6.2: Zum Punkt R gehört in der PD zur Gerade g mit Aufvektor ~A und Richtungsvektor
~v der Parameterwert t = 4, denn es ist ~R = ~A+ 4 · ~v.
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Verschiedene Auf- und Richtungsvektoren: Zu jeder Gerade g gibt es beliebig viele Aufvektoren
~A, denn grundsätzlich kann jeder Punkt A ∈ g als Aufpunkt für die PD dienen.

Ebenso gibt es beliebig viele Richtungsvektoren ~v, die ich zur Beschreibung von g verwenden
kann. Diese sind alle kollinear zueinander.

Hier ein Beispiel von drei PDs, die allesamt dieselbe Gerade g beschreiben:

~Pg(s) =




2
−1
3


+ s ·




1
2
−1


 ~Pg(t) =




5
5
0


+ t ·



−3

2
−3
3
2


 ~Pg(u) =




1
−3
4


+u ·




6
12
−6




Bemerke: Die drei Parameter s, t und u haben bei einem bestimmten Punkt P ∈ g in der
Regel nicht dieselben Werte! So gehören zu P (5, 5, 0) z.B. s = 3, t = 0 und u = −2

3 .

Notation als Punktmenge: Eine Gerade ist eine Menge von Punkten oder Ortsvektoren, die wir
im Beispiel von oben streng genommen etwa wie folgt notieren müssten:

g =





~P ∈ R
3

∣∣∣∣ ~P =




2
−1
3


+ s ·




1
2
−1


 , s ∈ R





Das ist aber gar umständlich, sodass wir es bei ~Pg(s) = . . . von oben bewenden lassen – auch
bei der Angabe einer Lösung, die aus einer Geraden besteht.

6.2 Geraden im R
2

Bisherige Notationen: In der x-y-Ebene eines zweidimensionalen Koordinatensystems haben wir
Geraden bis anhin durch Gleichungen oder lineare Funktionen beschrieben:

Geradengleichung

implizit explizit Lineare Funktion

ax+ by = c y = mx+ q g(x) = mx+ q

Dabei steht m für die Steigung und q für den y-Achsenabschnitt der Gerade. Die Parameter
a, b und c in der impliziten Geradengleichung haben bis dato keine ganz direkte grafische
Bedeutung, ausser dass klar ist, dass es sich für c = 0 um eine Ursprungsgerade handelt.

Richtungsvektor v und Steigung m: Die Richtung einer Gerade im R
2 kann, wie wir bereits ge-

sehen haben, auch durch einen Richtungsvektor ~v ∈ R
2 beschrieben werden. Dabei gibt es

eine einfache Umrechnung zwischen ~v und der Steigung m:

• Kenne ich die Steigung m einer Geraden, so kann ich sofort einen Richtungsvektor ~v

dieser Gerade angeben:

~v =

(
1

m

)
(6.2)

In Worten: Gehe ich einen Schritt nach rechts, also in die positive x-Richtung, so verändert
sich der y-Wert genau um den Steigungswert m.

• Umgekehrt kann aus jedem Richtungsvektor ~v auch leicht eine Steigung m gemacht
werden:

~v =

(
∆x

∆y

)
⇒ m =

∆y

∆x
(6.3)

Rep.: Im Falle der Vertikalen, also für ∆x = 0, gibt es gar keine explizite Form oder
Funktionsgleichung für die Gerade.

N.B.: Zu jeder Gerade gibt es unendlich viele Richtungsvektoren, die allesamt kollinear sind.
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Parameterdarstellung: Jeder Punkt A auf einer Gerade kann als Aufpunkt benutzt werden. Mit
dem zugehörigen Aufvektor ~A und einem Richtungsvektor ~v lässt sich jede Gerade in Form
einer Parameterdarstellung schreiben:

~Pg(t) = ~A+ t · ~v (6.4)

Die PD für eine Gerade im R
2 sieht also genau gleich aus wie diejenige in Gleichung (6.1) für

eine Gerade im R
3 und funktioniert auch genau gleich. Nur geht es jetzt halt um Vektoren

mit lediglich zwei Komponenten.

Geradengleichung im R
3? Ob ich im R

2 eher eine PD, eine Geradengleichung oder eine lineare
Funktion zur Beschreibung einer Gerade verwende, hängt stark von der jeweiligen Anwendung
ab. Ich benutze diejenige Darstellung, die mir gerade am praktischsten erscheint.

Wie sieht das im R
3 aus? Müsste es dort nun nicht auch so etwas wie eine Geradengleichung

oder eine lineare Funktion geben?

Antwort: Nein! Und das werden wir im Kapitel 7 auch noch besser ergründen und verstehen.

Im R
3 ist die Parameterdarstellung in der Regel die einzige brauchbare Form zur

Beschreibung einer Geraden!

6.3 Relative Lage von Geraden im Raum

Sobald ich mehrere Geraden betrachte, kann ich fragen, wie sie relativ zueinander stehen. Im R
3

wollen wir vier Fälle voneinander unterscheiden:

• Identität: Die beiden Geraden liegen aufeinander, sind also identisch.

• Echte Parallelität: Die Geraden sind parallel, liegen aber nicht auf-, sondern nebeneinander.

• Schneiden: Die beiden Geraden schneiden sich in einem Punkt.

• Windschief: Die beiden Geraden sind weder parallel, noch schneiden sie sich.

Dies ist der Normalfall, wenn wir zwei zufällig ausgewählte Geraden im R
3 betrachten.

Sind die PDs zweier Geraden g und h gegeben, z.B durch ~Pg(s) = ~A+ s · ~u und ~Ph(t) = ~B + t · ~v,
so lässt sich in zwei Schritten bestimmen, um welchen der vier Fälle es sich handelt:
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6.4 Die Parameterdarstellung der Ebene im R
3

Unter einer Ebene E verstehen wir eine unendlich ausgedehnte, nicht gekrümmte Fläche im drei-
dimensionalen Raum R

3. Alle Punkte einer Ebene lassen sich wiederum durch eine Parameter-
darstellung beschreiben. Diese beinhaltet nun allerdings zwei Parameter, weil eine Ebene eben ein
zweidimensionales Objekt ist (vgl. Abb. 6.3).

Die Parameterdarstellung (PD) einer Ebene

Jede Ebene E im Raum kann durch eine Parameterdarstellung (PD) beschrie-
ben werden:

~PE(s, t) = ~A+ s · ~u+ t · ~v mit s, t ∈ R (6.5)

Die PD enthält die Ortsvektoren ~P sämtlicher Punkte P ∈ E, wobei zu jedem P

ein ganz bestimmtes Wertepaar (s, t) der beiden Parameter s und t gehört.

Zur Beschreibung einer Ebene im Raum wird also ein Aufvektor ~A und zwei
nicht-kollineare Richtungsvektoren ~u und ~v benötigt.

Anmerkungen zur Parameterdarstellung der Gerade

Wie funktioniert die Ebenen-PD? In Gleichung (6.5) erkennen wir, dass wir mit dem Aufvektor
~A vom Ursprung zu einem Punkt A ∈ E springen. Was dahinter hinzuaddiert wird, ist eine
Linearkombination der beiden Richtungsvektoren ~u und ~v. So erreichen wir jeden Punkt P ∈ E.

Ausblick: Die Parameterdarstellung der Ebene ist zwar einfach und anschaulich, gleichzeitig aber
in der Anwendung eher ein bisschen unpraktisch. Im Kapitel 7 werden wir mit der Ebenen-
gleichung eine geschicktere Beschreibung der Ebene kennenlernen. Aus diesem Grund werden
wir auch nicht allzu viele Aufgaben zur Ebenen-PD bearbeiten.

Abbildung 6.3: Zur Beschreibung einer Ebene E durch eine PD wird ein Aufpunkt A resp. ein
Aufvektor ~A benötigt, der mich vom Ursprung auf die Ebene bringt. Mit einer Linearkombination
zweier Richtungsvektoren ~u und ~v gelange ich von dort zu jedem beliebigen Punkt P ∈ E.
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Kapitel 7

Die Koordinatengleichung der Ebene

Eine Punktmenge, die im R
3 eine Ebene bildet, beschreiben wir bis anhin durch eine Parameter-

darstellung (vgl. Abschnitt 6.4). Dazu benötigen wir einen Aufpunkt A mit Ortsvektor ~A und zwei
Richtungsvektoren ~u und ~v.:

~PE(r, s) =




x

y

z


 = ~A+ r · ~u+ s · ~v (7.1)

Diese Beschreibung einer Ebene ist zwar anschaulich sehr greifbar, rechnerisch aber oftmals eher
unpraktisch. Wir wollen nun eine wesentlich besser handhabbare Beschreibung von Ebenen im R

3

kennenlernen, die sogenannte Koordinatengleichung (KG).

7.1 Der Normalenvektor ~n einer Ebene

Die Ausrichtung einer Ebene wird in der Parameterdarstellung (7.1) durch die zwei Richtungsvek-
toren ~u und ~v festgelegt. Jeder Vektor ~w parallel zur Ebene resp. “in dieser drin” lässt sich als
Linearkombination von ~u und ~v schreiben: ~w = r · ~u+ s · ~v.

Betrachten wir Abb. 7.1. Der Vektor ~n soll senkrecht auf der Ebene E stehen. Als Konsequenz
davon steht er auch orthogonal zu jedem Vektor ~w in E. Einen solchen Vektor ~n bezeichnen wir als
Normalenvektor von E.

Abbildung 7.1: Der Normalenvektor ~n steht senkrecht zu allen Vektoren in der Ebene (hier nur für
~w1 explizit gezeigt) und legt so die Ausrichtung der Ebene fest.
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Ganz anschaulich beschreibt somit auch der Normalenvektor ~n die Ausrichtung der Ebene. An-
statt zwei Richtungsvektoren ~u und ~v innerhalb der Ebene zu deklarieren, kann man genau so gut
einen einzigen Normalenvektor ~n angeben, der senkrecht zur Ebene steht!

Alle Vektoren ~w parallel zur resp. innerhalb der Ebene E sind einerseits Linearkombinationen
von ~u und ~v, stehen andererseits aber auch senkrecht zu ~n – das Skalarprodukt ~n · ~w verschwindet.
Das bedeutet, die folgenden beiden Vektormengen sind identisch, sofern der Normalenvektor ~n zur
Ebene mit Richtungsvektoren ~u und ~v gehört:

{
~w ∈ R

3 | ~w = r · ~u+ s · ~v mit r, s ∈ R
}

≡
{
~w ∈ R

3 |~n · ~w = 0
}

Ab sofort werden wir die Ausrichtung einer Ebene fast ausschliesslich durch Verwendung eines Nor-
malenvektors ~n beschreiben!

Der Normalenvektor ~n zu einer Ebene E steht stets senkrecht
auf E und beschreibt so die Ausrichtung dieser Ebene im Raum.

Achtung! Der Normalenvektor ~n zu einer bestimmten Ebene E ist nicht eindeutig, aber alle Nor-
malenvektoren zu E sind kollinear zueinander. Typischerweise möchten wir die Komponenten von ~n

mit möglichst einfachen, ganzen Zahlen angeben!

Beispiel: Die Ebene E sei durch folgende Parameterdarstellung gegeben:

E : ~PE(r, s) = ~A+ r · ~u+ s · ~v =




4
−3
1


+ r ·



−2
1
1


+ s ·




7
4
−2




Ein Normalenvektor ~n zu E steht orthogonal zu allen Vektoren innerhalb von E, also auch zu den
beiden Richtungsvektoren ~u und ~v. Daraus folgt:

Ansatz: ~n =




x

y

z


 ⇒

∣∣∣∣∣
~u · ~n !

= 0

~v · ~n !
= 0

∣∣∣∣∣ ⇒
∣∣∣∣
−2x+ y + z = 0
7x+ 4y − 2z = 0

∣∣∣∣
①

②

⇒ 2 · ① + ②: 3x+ 6y = 0 ⇔ x = −2y

⇒ in ①: − 2 · (−2y) + y + z = 0 ⇔ 5y + z = 0 ⇔ z = −5y

Da der Normalenvektor ~n nicht eindeutig ist, hat sich auch keine eindeutige Lösung ergeben. Viel-
mehr sehen wir, dass wir durch unsere Auflösung die x- und die z-Komponente von ~n von der
y-Komponente abhängig gemacht haben. Nun dürfen wir für y jede beliebige Zahl 6= 0 einsetzen.
Insbesondere bietet sich y = −1 an, denn dadurch werden die Komponenten von ~n so einfach, wie
es nur geht:

y = −1 ⇒ x = 2 und z = 5 ⇒ ~n =




2
−1
5




Achtung Sprachverwirrung! Mittlerweile gibt es ein paar sehr ähnlich klingende Begriffe, die klar
auseinanderzuhalten sind:

Orthogonal: Stehen zwei Vektoren senkrecht aufeinander, so sagen wir, sie stehen orthogonal
zueinander.

Normal: Steht ein Vektor senkrecht auf einer Fläche, so sagen wir, er steht normal zu ihr. Deshalb
sprechen wir auch vom Normalenvektor einer Ebene oder in der Physik von der Normalkraft,
die stets senkrecht von der sie verursachenden stabilen Oberfläche weg zeigt.

Normiert: Hat ein Vektor die Länge resp. den Betrag 1, so sagen wir, er ist normiert.
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7.2 Der Weg zur Koordinatengleichung

Vorgabe: Von einer Ebene E sei ein Punkt A ∈ E und der Normalenvektor ~n bekannt:

A(Ax, Ay, Az) resp. ~A =




Ax

Ay

Az


 und ~n =




a

b

c




Fragestellung: Gibt es eine Gleichung, durch die sich alle restlichen Punkte P (x, y, z) ∈ E durch
A und ~n beschreiben lassen?

Bemerke: Die Lage von E im Raum ist durch die Angabe ihrer Ausrichtung (Normalenvektor ~n)
und eines Punktes in ihr (Aufpunkt A) eindeutig festgelegt. Die Frage nach einer Gleichung
zur Beschreibung der Ebene aufgrund dieser Vorgaben ist also durchaus gerechtfertigt.

Aufspüren der Antwort: Wir betrachten Abb. 7.2. Darin bemerken wir: Egal welchen Punkt P ∈ E

wir auswählen, der Vektor
#    –

AP vom Aufpunkt A zu P steht orthogonal zum Normalenvektor
~n. Es gilt also:

~n · #    –

AP = 0 für alle P ∈ E (7.2)

Tatsächlich ist dies bereits die gesuchte Gleichung, denn darin tauchen neben dem Punkt P
ja effektiv nur noch der Aufpunkt A und der Normalenvektor ~n auf! Allerdings wollen wir sie
noch etwas anders aufschreiben:

~n · #    –

AP = ~n ·
(
~P − ~A

)
= ~n · ~P − ~n · ~A = 0 ⇔ ~n · ~P = ~n · ~A (7.3)

Wir werden diese Gleichung nicht so stehen lassen, aber in dieser Form (7.3) eignet sie sich
bestens für die Veranschaulichung an einem Beispiel.

Abbildung 7.2: Grafik zur Herleitung der Koordinatengleichung. Der wichtigste Aspekt: Der Vektor
#    –

AP steht senkrecht zum Normalenvektor ~n, egal welchen Punkt P ∈ E wir betrachten.
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Beispiel: Wir benutzen die Ebene aus dem Beispiel in Abschnitt 7.1, zu der wir bereits einen
Normalenvektor ~n bestimmt haben. Es sind:

~A =




Ax

Ay

Az


 =




4
−3
1


 und ~n =




a

b

c


 =




2
−1
5




Notieren wir damit Gleichung (7.3):

~n · ~P = ~n · ~A ⇔




2
−1
5


 ·




x

y

z


 =




2
−1
5


 ·




4
−3
1




⇔ 2x− y + 5z = 2 · 4 + (−1) · (−3) + 5 · 1 ⇔ 2x− y + 5z = 16

Hier sehen wir zum ersten Mal die Koordinatengleichung zu einer bestimmten Ebene E vor
uns. Das ist wirklich eine sehr schlanke Darstellung. Jeder Punkt P (x, y, z) ∈ E erfüllt diese
simple Gleichung! D.h., die Gleichung beschreibt die Ebene vollständig!

Allgemeines Resultat: Wir haben nun am Beispiel gesehen, wozu Gleichung (7.3) wird, wenn wir
konkrete Werte für ~n und A einsetzen:

• Auf der linken Seite steht das Skalarprodukt des Normalenvektors ~n mit dem Ortsvektor
~P aller zu beschreibenden, also in der Ebene enthaltenen Punkte P (x, y, z). Im Beispiel
oben war das ~n · ~P = 2x− y + 5z, allgemein geschrieben ~n · ~P = ax+ by + cz.

• Auf der rechten Gleichungsseite steht das Skalarprodukt aus Normalen- und Aufvektor,
das einfach eine Zahl d ergibt: ~n · ~A = aAx + bAy + cAz = d.

Insgesamt ergibt sich aus (7.3) also eine Gleichung der Form:

ax+ by + cz = d mit ~n =




a

b

c


 und d = ~n · ~A (7.4)

Wahlfreiheit des Aufpunktes: 2x−y+5z = 16 beschreibt offenbar alle Punkte P (x, y, z), die zu-
sammen eine ganz bestimmte Ebene E bilden. Dabei ist d = 16 auf der rechten Gleichungsseite
durch das Einsetzen des Aufpunktes A(4,−3, 1) entstanden.

Das ist im ersten Moment einigermassen irritierend: Wir berechnen den Gleichungsparameter d
aus dem Aufpunkt A (d = ~n · ~A ), aber die Wahl dieses Aufpunktes A darf doch gar keine Rolle
spielen! Jeder beliebige Punkt A ∈ E muss doch als Aufpunkt dienen können! Ergäbe sich mit
einem anderen Aufpunkt A nicht ein anderer Wert d, wodurch (7.4) dann offensichtlich eine
andere Ebene beschreiben würde?

Die Antwort lautet: Nein! Jeder beliebige Punkt A ∈ E darf zur Berechnung von d = ~n · ~A auf
der rechten Gleichungsseite verwendet werden. Es ergibt sich immer derselbe Wert, im Beispiel
oben d = 16. Das lässt sich auch leicht beweisen:

Seien A,B ∈ E. Dann gibt es einen Vektor
#    –

AB so, dass ~B = ~A +
#    –

AB. Dieser Vektor
#    –

AB

von A nach B liegt in der Ebene E resp. parallel zu ihr. Daraus folgt aber sofort:

~n · ~B = ~n ·
(
~A+

#    –

AB
)
= ~n · ~A+ ~n · #    –

AB︸ ︷︷ ︸
=0

= ~n · ~A also: ~n · ~A = ~n · ~B q.e.d.

Das Skalarprodukt ~n · #    –

AB ergibt 0, weil
#    –

AB ein Vektor innerhalb der Ebene E ist und daher
der Normalenvektor ~n senkrecht dazu steht!

Im Prinzip haben wir mit dieser Überlegung nur nochmals verifiziert, dass (7.4) die Ebene E

beschreibt. Es ist eben egal, welchen Punkt P (x, y, z) ∈ E ich in die linke Gleichungsseite
einsetze. Es muss sich immer derselbe Wert d ergeben!
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7.3 Die Koordinatengleichung einer Ebene

Halten wir an dieser Stelle in Kürze fest, was wir eben herausgefunden haben:

Die Koordinatengleichung der Ebene

Alle Punkte P (x, y, z) einer Ebene E erfüllen eine Koordinatengleichung (KG)

ax+ by + cz = d (7.5)

Dabei ist

~n =




a

b

c




ein Normalenvektor von E und der Parameter d ergibt sich durch Einsetzen
eines beliebigen Punktes P ∈ E in (7.5).

Anmerkungen zur Koordinatengleichung der Ebene

• Die Koordinatengleichung (7.5) ist eine lineare Gleichung mit drei Unbekannten x, y und z

und vier Parametern a, b, c und d. Eine solche Gleichung beschreibt eine Ebene im R
3.

• Die KG zu einer bestimmten Ebene E ist nicht eindeutig, denn die ganze Gleichung (7.5) kann
ja mit irgendeiner von Null verschiedenen Zahl k ∈ R skaliert werden. Z.B. beschreiben

2x− y + 5z = 16 und x− 1

2
y +

5

2
z = 8 und − 10x+ 5y − 25z = −80

allesamt die gleiche Ebene.

• Dass in der KG die Komponenten a, b, c eines Normalenvektors ~n von E direkt sichtbar
sind, macht sie quasi zu unserer Standardschreibweise für Ebenen, denn diese Eigenschaft ist
ungemein praktisch.

• Verwandtschaft zur Geradengleichung ax + by = c: Erinnern wir uns an die lineare Glei-
chung mit zwei Unbekannten: ax + by = c. Diese Gleichung beschreibt eine Gerade im R

2,
also in einem zweidimensionalen Raum. Eine Gerade ist ein eindimensionales, unendlich aus-
gedehntes und nicht-gekrümmtes Objekt.

Offenbar ist es so: Jede Gleichung, die im R
2 für x und y aufgestellt wird, definiert einen

eindimensionalen geometrischen Ort (eine Art von Kurve). Da es sich bei ax+ by = c um eine
lineare Gleichung handelt, ist dieser geometrische Ort nicht-gekrümmt, also eine Gerade.1

Ganz analog können wir im R
3 nun sagen: Jede Gleichung für x, y und z beschreibt eine

Fläche, also einen zweidimensionalen geometrischen Ort. Da die Koordinatengleichung (7.5)
eine lineare Gleichung ist, beschreibt sie eine nicht-gekrümmte Fläche, also eine Ebene.2

Ganz Verwegene dürfen an dieser Stelle gerne weiterdenken: Im vierdimensionalen Raum mit
Punkten P (w, x, y, z) ∈ R

4 beschreibt die lineare Gleichung aw + bx + cy + dz = e einen
nicht-gekrümmten dreidimensionalen Raum. Das ist absolut folgerichtig, auch wenn wir uns
bildlich unter dieser Aussage nicht mehr ganz direkt etwas vorstellen können.

1Hier ein Beispiel für die Gleichung einer gekrümmten Kurve im R
2. Zum Kreis mit Radius r um den Mittelpunkt

M(xM , yM ) gehört die Gleichung (x− xM )2 + (y − yM )2 = r2.
2Auch im R

3 gibt es gekrümmte Flächen, z.B. eine Sphäre, also eine Kugeloberfläche. Zur Sphäre mit Radius r

um den Mittelpunkt M(xM , yM , zM ) gehört die Gleichung (x− xM )2 + (y − yM )2 + (z − zM )2 = r2.
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7.4 Der Schnittwinkel von Ebene und Gerade

Vorgabe: Eine Ebene E sei durch ihre Koordinatengleichung gegeben. Die durch ~Pg(t) = ~A+ t · ~v
definierte Gerade g durchsteche E in einem bestimmten Punkt S.

Definition des Schnittwinkels von Ebene und Gerade: Abb. 7.3 illustriert, welchen Winkel ϕ

wir unter dem Schnittwinkel zwischen der Ebene E und der Gerade g verstehen wollen,
nämlich den spitzen Winkel zwischen der Gerade g und ihrer “Schattenlinie” s auf der Ebene
E, die entsteht, wenn man g längs der Richtung des Normalenvektors ~n auf E projiziert.

Winkelberechnung: Neben dem Richtungsvektor ~v von g kennen wir auch den Normalenvektor ~n
von E, denn er ist ja direkt aus der Koordinatengleichung ablesbar.

Folglich lässt sich der Winkel (90◦ − ϕ) mittels Gleichung (5.8) bestimmen:

cos(90◦ − ϕ) =
~n · ~v
n · v

Nun ist aber cos(90◦ − ϕ) = sinϕ, sodass wir für ϕ finden:

sinϕ =
~n · ~v
n · v ⇒ ϕ = arcsin

~n · ~v
n · v (7.6)

Negatives Skalarprodukt: Mit (7.6) gibt es allerdings noch ein kleines Problem. Ist nämlich das
Skalarprodukt ~n · ~v negativ, so entsteht ein negativer Winkel ϕ, denn die arcsin-Funktion ist
eine Abbildung von [−1; 1] nach [−90◦; 90◦].

Die Erklärung für diesen Fall liegt auf der Hand: ~n und ~v zeigen nicht auf dieselbe Seite von
E. Ihr Zwischenwinkel ist folglich stumpf. Das lässt sich rasch korrigieren, indem wir z.B. den
Normalenvektor mit −1 multiplizieren. Damit ändert auch das Skalarprodukt sein Vorzeichen
und wir erhalten wirklich den spitzen Schnittwinkel zwischen E und g.

Dank dieser Erkenntnis lässt sich (7.6) wie folgt korrigieren und gilt nun in jedem Fall:

ϕ = arcsin
|~n · ~v |
n · v (7.7)

Abbildung 7.3: Der Schnittwinkel ϕ zwischen Ebene und Gerade.
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7.5 Der Abstand zwischen Punkt und Ebene

Beispielvorgabe: Die Ebene E sei definiert durch E : 2x − 2y + z = 3. Weiter gegeben sei der
Punkt P (−1, 5,−3). Er liegt nicht auf E, denn 2 · (−1)− 2 · 5 + 1 · (−3) = −15 6= 3.

Fragestellung: Wie weit ist der Punkt P von der Ebene E entfernt?

Idee zur Beantwortung: Betrachten wir Abb. 7.4. Fällen wir von P aus das Lot auf die Ebene E,
so ergibt sich der Fusspunkt F ∈ E. Der gesuchte Abstand dPE zwischen dem Punkt P und
der Ebene E entspricht dem Betrag des Vektors

#    –

PF .

Weiter liegt dPE = PF auf der Gerade g, die senkrecht auf der Ebene E steht, denn wir haben
von P aus ja das Lot auf E gefällt. Der Normalenvektor ~n von E ist also ein Richtungsvektor
von g.

Damit ist aber klar, wie sich F und somit dann auch
#    –

PF bestimmen lässt:

i. Für g können wir eine PD mit Aufpunkt P und Richtungsvektor ~n ansetzen.

ii. Wir schneiden g mit E und bestimmen so den Fusspunkt F .

iii. Aus F erhalten wir den Vektor
#    –

PF und somit auch dessen Betrag PF , der dem gesuchten
Abstand dPE entspricht.

Abbildung 7.4: Der Abstand zwischen einem Punkt und einer Ebene.

Rechnerische Ausführung: Ich folge den oben deklarierten Schritten:

i. Als PD von g ergibt sich aus den Vorgaben:

g : ~Rg(t) = ~P + t · ~n =



−1
5
−3


+ t ·




2
−2
1




ii. Diese PD fügen wir in die Koordinatengleichung von E ein und erhalten daraus für den
zum Fusspunkt F gehörenden Parameterwert t (F = Schnittpunkt von g mit E):

2(−1 + 2t)− 2(5 − 2t) + 1(−3 + t) = −2 + 4t− 10 + 4t− 3 + t = −15 + 9t
!
= 3

⇔ 9t = 18 ⇔ t = 2
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Daraus folgt für den Fusspunkt F :

~F =



−1
5
−3


+ 2 ·




2
−2
1


 =




3
1
−1


 ⇒ F (3, 1,−1)

iii. Und somit erhalten wir für
#    –

PF und den Abstand dPE :

#    –

PF = ~F − ~P =




3
1
−1


−



−1
5
−3


 =




4
−4
2


 = 2 ·




2
−2
1


 = 2 · ~n

⇒ dPE =
∣∣ #    –

PF
∣∣ = 2 ·

√
22 + 22 + 12 = 2 · 3 = 6

Bemerke: Den Punkt F hätten wir für die Abstandsberechnung gar nicht zu bestimmen
brauchen, denn der Vektor

#    –

PF ist bereits durch
#    –

PF = t · ~n gegeben.

Anstoss zur allgemeinen Lösung: Es wird sich als aufschlussreich erweisen den Abstand dPE zwi-
schen Punkt und Ebene ganz allgemein herzuleiten. Nun wissen wir ja, wie das im konkreten
Fall geht, sodass uns die rein algebraische Lösung nicht mehr so abstrakt vorkommen wird.

Allgemeine Vorgabe: Die Ebene E und der Punkt P seien nun also allgemein gegeben durch
E : ax+ by + cz = d und P (x, y, z).

Allgemeine Lösung: Wiederum folge ich dem Rezept von oben:

i. Für die PD von g schreiben wir:

g : ~Rg(t) = ~P + t · ~n =




x

y

z


+ t ·




a

b

c




ii. Mit dieser PD gehen wir in die Koordinatengleichung von E und ermitteln den zu F

gehörenden Parameterwert t:

a(x+ at) + b(y + bt) + c(z + ct) = ax+ by + cz +
(
a2 + b2 + c2

)
t

!
= d

⇔
(
a2 + b2 + c2

)
t = d− ax− by − cz ⇔ t =

d− ax− by − cz

a2 + b2 + c2

iii. Nun erhalten wir für den Vektor
#    –

PF und daraus schliesslich für den Abstand dPE:

#    –

PF = t · ~n =
d− ax− by − cz

a2 + b2 + c2
·




a

b

c




⇒ dPE =
∣∣ #    –

PF
∣∣ = |d− ax− by − cz|

a2 + b2 + c2
·
√

a2 + b2 + c2 =
|d− ax− by − cz|√

a2 + b2 + c2

In diesem allgemeinen Resultat steht
√
a2 + b2 + c2 für den Betrag des in der Koordinaten-

gleichung von E verwendeten Normalenvektors ~n, also n = |~n| =
√
a2 + b2 + c2.

Damit wollen wir unser Ergebnis oben auf der nächsten Seite gleich nochmals notieren.
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Abstand eines Punktes von einer Ebene

Der Abstand dPE des Punktes P (x, y, z) von der Ebene E : ax+ by+ cz = d ist
gegeben durch:

dPE =
|d− ax− by − cz|√

a2 + b2 + c2
=

|d− ax− by − cz|
n

(7.8)

Dabei ist n =
√
a2 + b2 + c2 der Betrag des in der Koordinatengleichung von E

verwendeten Normalenvektors ~n.

Erste Diskussion der allgemeinen Lösung: Wenn man über ein allgemeines Resultat zu einem
bestimmten Problem verfügt, sollte man es nicht verpassen daraus Aussagen zum einen oder
anderen Spezialfall abzuleiten:

• Abstand der Ebene zum Ursprung: Wählen wir für P den Ursprung O(0, 0, 0), so
vereinfacht sich (7.8) ganz wesentlich und gibt uns direkt an, wie weit die Ebene E vom
Origo entfernt ist:

Abstand der Ebene vom Ursprung: dOE =
|d|
n

(7.9)

Der Parameter d hat also ganz direkt mit dem Abstand der Ebene vom Ursprung zu tun.
Eine Ebene durch den Ursprung hat stets d = 0.

• Normierter Normalenvektor: Haben wir in der Koordinatengleichung von E einen nor-
mierten Normalenvektor ~n verwendet (n = 1), so vereinfacht sich (7.8) ebenfalls:

Abstand Punkt–Ebene bei normiertem ~n: dOE = |d− ax− by − cz| (7.10)

• Abstand Ursprung–Ebene bei normiertem Normalenvektor: Kombinieren wir die
beiden obigen Fälle, so ergibt sich eine ganz besonders einfache Aussage zum Abstand
der Ebene E vom Ursprung O:

Abstand der Ebene vom Ursprung bei normiertem ~n: dOE = |d| (7.11)

Verwenden wir also einen normierten Normalenvektor zur Beschreibung der Ebene, so
hat der Parameter d nicht nur mit dem Abstand zum Ursprung zu tun, vielmehr ist sein
Betrag gleich dem Abstand der Ebene zum Ursprung!

• Unterscheidung der beiden Halbräume: Die Betragsstriche in (7.8) sorgen lediglich
dafür, dass der berechnete Abstand stets positiv herauskommt. Lassen wir die Betragsstri-
che weg, so können sich positive und negative Werte ergeben. Aus Gründen, die erst im
nächsten Abschnitt ersichtlich werden, kehre ich noch die Vorzeichen um und definiere:

hPE :=
ax+ by + cz − d√

a2 + b2 + c2
=

ax+ by + cz − d

n
(7.12)

Alle Punkte P , für die hPE positiv herauskommt, liegen auf der einen Seite von E, alle mit
negativem Wert auf der anderen – wir sagen: sie liegen in unterschiedlichen Halbräumen.
Dabei besagt ein positiver Wert, dass man sich in die Richtung des Normalenvektors von
der Ebene entfernen muss, um zu P zu gelangen. Für Punkte mit negativem hPE muss
man in die Gegenrichtung von ~n von E weggehen.
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7.6 Die Hesse’sche Normalform der Koordinatengleichung

Die Koordinatengleichung ax+ by + cz = d beschreibt eine Menge aus Punkten P (x, y, z), die zu-
sammen eine Ebene E bilden. Wie jede Gleichung, so dürfen wir auch diese Koordinatengleichung mit
Äquivalenzumformungen nach Belieben umstellen, ohne dass sich dabei etwas an der Lösungsmenge
verändert. D.h., die umgeformte Gleichung wird immer noch dieselbe Ebene E beschreiben.

Auf diese Weise bringe ich die Koordinatengleichung auf eine andere Form:

ax+ by + cz = d ⇔ ax+ by + cz − d = 0 ⇔ ax+ by + cz − d√
a2 + b2 + c2

= 0

In dieser Form steht nun auf der linken Seite der Ausdruck für hPE aus Gleichung (7.12)!
Wir können die Koordinatengleichung einer Ebene also in Kürze auf eine Form bringen, in der

auf der einen Gleichungsseite ein Ausdruck für den Abstand eines Punktes P (x, y, z) von der Ebene
steht. Und natürlich muss dieser Abstand gleich Null sein, wenn der Punkt zur Ebene gehören soll!

Diese Gleichungsform beinhaltet demnach ganz unmittelbar sehr praktische Informationen über
die Ebene, aber auch über die Lage anderer Punkte relativ zu ihr. Sie hat deshalb nach ihrem Erfinder
einen eigenen Namen erhalten: Hesse’sche Normalform.

Hesse’sche Normalform (HNF) der Koordinatengleichung

Subtrahieren wir von der Koordinatengleichung ax+ by+ cz = d einer Ebene E den
Parameter d und dividieren anschliessend durch n =

√
a2 + b2 + c2, so erhalten wir

die Hesse’sche Normalform (HNF) der Koordinatengleichung:

HNF:
ax+ by + cz − d

n︸ ︷︷ ︸
=hPE

= 0 (7.13)

Dabei steht die linke Seite hPE für den mit einem Vorzeichen behafteten Abstand
eines Punktes P (x, y, z) von der Ebene E, wobei sich drei Fälle unterscheiden lassen:

hPE > 0 ⇔ P liegt auf der Seite von E, in die der Normalenvektor ~n zeigt

hPE = 0 ⇔ P liegt in der Ebene E

hPE < 0 ⇔ P liegt auf der Seite von E, in die der Vektor −~n zeigt

Die zwei Seiten von E werden als Halbräume bezeichnet.

Abbildung 7.5: Lage von Punkten für verschiedene Vorzeichen von hPE .
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Kapitel 8

Dreireihige Determinanten

In diesem Kapitel lernen wir sogenannte dreireihige Determinanten zu berechnen und damit lineare
3x3-Gleichungssysteme zu lösen. Es ist ein Einschub, der zunächst nur bedingt mit Vektorgeometrie
zu tun haben scheint. Wir werden erst im nächsten Kapitel erfahren, wo der direkte Zusammenhang
besteht und wie man das sogenannte Vektorprodukt als dreireihige Determinante auffassen kann.

8.1 Rep.: Zweireihige Determinanten und 2x2-Gleichungssysteme

Satz: Das lineare 2x2-Gleichungssystem

∣∣∣∣
a1x+ b1y = c1
a2x+ b2y = c2

∣∣∣∣

hat genau dann genau eine Lösung, wenn seine Determinante

D =

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ := a1b2 − a2b1

verschieden von null ist. Sie lautet:

(x, y) =

(
Dx

D
,
Dy

D

)
(8.1)

mit Dx :=

∣∣∣∣
c1 b1
c2 b2

∣∣∣∣ = c1b2 − c2b1 und Dy :=

∣∣∣∣
a1 c1
a2 c2

∣∣∣∣ = a1c2 − a2c1

Das wollen wir besser nochmals kurz beweisen. . .

Beweis: Wir lösen das Gleichungssystem mit dem vertrauten Additionsverfahren:

∣∣∣∣
a1x+ b1y = c1
a2x+ b2y = c2

∣∣∣∣
①

②
⇒ a2 · ①:

a1 · ②:

∣∣∣∣
a1a2x+ a2b1y = a2c1
a1a2x+ a1b2y = a1c2

∣∣∣∣
③

④

⇒ ④ − ③: a1b2y − a2b1y = a1c2 − a2c1 ⇔ (a1b2 − a2b1)y = a1c2 − a2c1

⇒ y =
a1c2 − a2c1

a1b2 − a2b1
=

Dy

D
und auf dieselbe Weise: x =

c1b2 − c2b1

a1b2 − a2b1
=

Dx

D

Diese Brüche existieren nur, falls D = a1b2 − a2b1 6= 0. q.e.d
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Zur Erinnerung: Die Lösung eines linearen 2x2-Gleichungssystems entspricht der Bestimmung des
Schnittpunktes zweier Geraden g und h in einem x-y-Koordinatensystem. Für D 6= 0 sind die beiden
Geraden nicht parallel und haben somit einen eindeutigen Schnittpunkt.

Explizit: Wird g durch a1x + b1y = c1 beschrieben, so ist y = −a1
b1
x + c1

b1
≡ m1x + q1. Die

Steigung von g ist also m1 = −a1
b1
. Analog ist die Steigung von h : a2x+ b2y = c2 gegeben durch

m2 = −a2
b2
. Wären die beiden Steigungen gleich, so wäre m1 = m2 resp. −a1

b1
= −a2

b2
und somit

a1b2 = a2b1 resp. eben D = a1b2 − a2b1 = 0.

8.2 Rechenregeln für zweireihige Determinanten

Bei der Berechnung zweireihiger Determinanten werden 2x2 Zahlen nach einer bestimmten Vorschrift
miteinander zu einer neuen Zahl verrechnet:

∣∣∣∣
a b

c d

∣∣∣∣ := ad− bc (8.2)

Aus dieser Definition lassen sich ein paar fundamentale Rechenregeln für Determinanten ableiten.
Diese werden später gleich oder zumindest ähnlich auch für dreireihige Determinanten gelten.

“Distributivität”: Für alle a, b, c, d, e, f ∈ R gilt:

∣∣∣∣
a+ b c

d+ e f

∣∣∣∣ =
∣∣∣∣
a c

d f

∣∣∣∣+
∣∣∣∣
b c

e f

∣∣∣∣ (8.3)

∣∣∣∣
a b+ c

d e+ f

∣∣∣∣ =
∣∣∣∣
a b

d e

∣∣∣∣+
∣∣∣∣
a c

d f

∣∣∣∣ (8.4)

∣∣∣∣
a− b c

d− e f

∣∣∣∣ =
∣∣∣∣
a c

d f

∣∣∣∣−
∣∣∣∣
b c

e f

∣∣∣∣ (8.5)

∣∣∣∣
a b− c

d e− f

∣∣∣∣ =
∣∣∣∣
a b

d e

∣∣∣∣−
∣∣∣∣
a c

d f

∣∣∣∣ (8.6)

Die Beweise sind mittels (8.2) rasch erbracht:

∣∣∣∣
a+ b c

d+ e f

∣∣∣∣ = (a+ b)f − (d+ e)c = af − cd+ bf − ce =

∣∣∣∣
a c

d f

∣∣∣∣+
∣∣∣∣
b c

e f

∣∣∣∣ etc.

“Skalare Multiplikation”: Für alle a, b, c, d, k ∈ R gilt:

∣∣∣∣
ka b

kc d

∣∣∣∣ = k ·
∣∣∣∣
a b

c d

∣∣∣∣ und

∣∣∣∣
a kb

c kd

∣∣∣∣ = k ·
∣∣∣∣
a b

c d

∣∣∣∣ (8.7)

ebenso:

∣∣∣∣
ka kb

c d

∣∣∣∣ = k ·
∣∣∣∣
a b

c d

∣∣∣∣ und

∣∣∣∣
a b

kc kd

∣∣∣∣ = k ·
∣∣∣∣
a b

c d

∣∣∣∣ (8.8)

Die Beweise sind trivial. Ich verzichte darauf sie explizit zu notieren.

Zeilen- und Spaltenvertauschung: Für alle a, b, c, d ∈ R gilt:

∣∣∣∣
a b

c d

∣∣∣∣ = −
∣∣∣∣
c d

a b

∣∣∣∣ ebenso:

∣∣∣∣
a b

c d

∣∣∣∣ = −
∣∣∣∣
b a

d c

∣∣∣∣ (8.9)
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8.3 Dreireihige Determinanten und lineare 3x3-Gleichungssysteme

Wir wollen nun auch für lineare 3x3-Gleichungssysteme (3x3-LGS) ein Determinantenverfah-
ren entwickeln. Dieses soll auf dem Verfahren für 2x2-Gleichungssysteme und den Regeln für 2x2-
Determinanten aufbauen.

Vorgabe: Wir betrachten das allgemeine lineare 3x3-Gleichungssystem:

∣∣∣∣∣∣

a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

∣∣∣∣∣∣

①

②

③

mit a1, . . . , d3 ∈ R (8.10)

Lösung: Beim Lösen von Gleichungssystemen ist es ein probates Mittel als Zwischenschritt die eine
Unbekannte durch eine andere auszudrücken. Genau das machen wir nun, indem wir zunächst
② und ③ neu schreiben und als 2x2-LGS auffassen:

∣∣∣∣
b2y + c2z = d2 − a2x

b3y + c3z = d3 − a3x

∣∣∣∣

Sind y und z die Unbekannten dieses LGS, so können wir aufgrund des Determinantenverfah-
rens für 2x2-LGS gemäss (8.1) die Lösung direkt notieren:

y =
Dy

D
=

∣∣∣∣
d2 − a2x c2
d3 − a3x c3

∣∣∣∣
∣∣∣∣
b2 c2
b3 c3

∣∣∣∣
und z =

Dz

D
=

∣∣∣∣
b2 d2 − a2x

b3 d3 − a3x

∣∣∣∣
∣∣∣∣
b2 c2
b3 c3

∣∣∣∣

Dabei haben wir vorausgesetzt, dass D = b2c3 − b3c2 6= 0 ist.

Nun setzen wir diese Lösungsausdrücke für y und z in ① ein und multiplizieren danach mit D:

a1x+ b1 ·

∣∣∣∣
d2 − a2x c2
d3 − a3x c3

∣∣∣∣
∣∣∣∣
b2 c2
b3 c3

∣∣∣∣
+ c1 ·

∣∣∣∣
b2 d2 − a2x

b3 d3 − a3x

∣∣∣∣
∣∣∣∣
b2 c2
b3 c3

∣∣∣∣
= d1

⇒ a1x ·
∣∣∣∣
b2 c2
b3 c3

∣∣∣∣+ b1 ·
∣∣∣∣
d2 − a2x c2
d3 − a3x c3

∣∣∣∣+ c1 ·
∣∣∣∣
b2 d2 − a2x

b3 d3 − a3x

∣∣∣∣ = d1 ·
∣∣∣∣
b2 c2
b3 c3

∣∣∣∣

Auf die Determinanten bei b1 und c1 wenden wir nun die “Distributivregeln” (8.5) und (8.6),
sowie die Regel zur “skalaren Multiplikation” (8.7) an:

a1x

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣+ b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣− b1x

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣+ c1

∣∣∣∣
b2 d2
b3 d3

∣∣∣∣− c1x

∣∣∣∣
b2 a2
b3 a3

∣∣∣∣ = d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣

So kompliziert diese Gleichung aussieht, es handelt sich um eine ganz normale lineare Gleichung
in der Unbekannten x. Schliesslich sind alle Determinanten einfach Zahlen. Wir lösen die
Gleichung auf die übliche Art und Weise: Separieren, x ausklammern und am Ende durch die
Klammer teilen. Hier zunächst die Separation und das Ausklammern:

a1x

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣− b1x

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣− c1x

∣∣∣∣
b2 a2
b3 a3

∣∣∣∣ = d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣− c1

∣∣∣∣
b2 d2
b3 d3

∣∣∣∣

⇒ x ·
(
a1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣− c1

∣∣∣∣
b2 a2
b3 a3

∣∣∣∣
)

= d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣− c1

∣∣∣∣
b2 d2
b3 d3

∣∣∣∣
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Bevor wir nun bald durch die Klammer teilen, wende ich noch die Regel (8.9) zur Spaltenver-
tauschung auf die Glieder mit Vorfaktor c1 an:

x ·
(
a1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣
︸ ︷︷ ︸

=A

− b1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣
︸ ︷︷ ︸

=B

+ c1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣
︸ ︷︷ ︸

=C

)
= d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣+ c1

∣∣∣∣
d2 b2
d3 b3

∣∣∣∣

Definition der dreireihigen Determinante: In obiger Gleichung steht nun links in der grossen
Klammer ein Ausdruck, den wir auf der rechten Gleichungsseite sehr ähnlich wiederfinden.
Diese Ausdrücke lassen sich als Ausrechnung einer dreireihigen Determinante, wenn wir
diese wie folgt definieren:

D =

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
:= a ·

∣∣∣∣
e f

h i

∣∣∣∣− b ·
∣∣∣∣
d f

g i

∣∣∣∣+ c ·
∣∣∣∣
d e

g h

∣∣∣∣ (8.11)

Die dreireihige Determinante wird also aufbauend auf der zweireihigen Determinante definiert.
Die Einträge in der obersten Zeile werden je multipliziert mit einer zweireihigen Determinante,
die sich aus den Einträgen in den unteren beiden Zeilen aus den anderen beiden Spalten ergibt.
Wenn ich diese 2x2-Determinante so zusammenfüge, wie sie in der dreireihigen Determinante
steht (ohne Spalten zu vertauschen), so ergibt sich beim zweiten Glied ein Minuszeichen.

Fortsetzung der Lösung: Unsere obige Gleichung kann nun kürzer geschrieben werden:

x ·

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
︸ ︷︷ ︸

=D

=

∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
︸ ︷︷ ︸

=Dx

Falls nun D 6= 0 ist, dürfen wir durch diese Determinante teilen und erhalten, wie schon beim
2x2-LGS:

x =
Dx

D
(8.12)

Dabei entspricht Dx fast der Determinante D, nur dass wir die Spalte der ursprünglich bei x
stehenden Koeffizienten a1, a2 und a3 durch die Konstantenspalte mit d1, d2 und d3 ausge-
tauscht haben.

Bei dieser Herleitung haben wir nach x aufgelöst und dabei A 6= 0 vorausgesetzt. Hätten wir
nach y aufgelöst, so wäre die Voraussetzung B 6= 0 nötig gewesen und bei z C 6= 0.

Wenn D 6= 0 ist, können nicht alle diese Unterdeterminanten A, B und C gleich null sein.
Man kann deshalb für D 6= 0 mindestens eine Variable bestimmen.

Tatsächlich gilt aber (ohne Beweis): Ist D 6= 0, so können alle Variablen bestimmt werden
und es gilt:

(x, y, z) =

(
Dx

D
,
Dy

D
,
Dz

D

)

Ausgeschriebene Determinante: Die Definition (8.11) kann man auch ganz ausschreiben. Wir
erhalten sechs Glieder, drei positive und drei negative:

D =

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= a1 ·

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣− b1 ·
∣∣∣∣
a2 c2
a3 c3

∣∣∣∣+ c1 ·
∣∣∣∣
a2 b2
a3 b3

∣∣∣∣

= a1(b2c3 − b3c2)− b1(a2c3 − a3c2) + c1(a2b3 − a3b2)

= a1b2c3 + b1c2a3 + c1a2b3 − a1b3c2 − b1a2c3 − c1b2c3
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8.4 Rechenregeln für dreireihige Determinanten

Wie bei zweireihigen Determinanten (vgl. S. 44), so gibt es auch bei dreireihigen Determinanten rela-
tiv einfache Rechenregeln, von denen wir ein paar kurz festhalten wollen. Auf die Beweise verzichten
wir. Sie sind mittels der Definition (8.11) und der rasch zu erledigen:

Berechnungsverfahren: Aufgrund der Ausmultiplikation auf der vorangegangenen Seite unten kann
man sich weitere Berechnungsverfahren ausdenken, z.B.:

Letztlich spielt es keine Rolle, wie du eine dreireihige Determinante berechnest – Hauptsache
du bist darin geübt und sicher!

“Distributivität”: Für jede Determinante mit reellen Einträgen gilt:

∣∣∣∣∣∣

a+ b c d

e+ f g h

i+ j k l

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a c d

e g h

i k l

∣∣∣∣∣∣
+

∣∣∣∣∣∣

b c d

f g h

j k l

∣∣∣∣∣∣
etc.

“Skalare Multiplikation: Wird eine Zeile oder eine Spalte mit einem Faktor k multipliziert, so auch
der Wert der Determinante:

∣∣∣∣∣∣

ka kb kc

d e f

g h i

∣∣∣∣∣∣
= k ·

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
und

∣∣∣∣∣∣

a kb c

d ke f

g kh i

∣∣∣∣∣∣
= k ·

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
etc. (8.13)

Zeilen- und Spaltenvertauschung: Bei der Vertauschung zweier Zeilen oder Spalten wechselt die
Determinante ihr Vorzeichen:

∣∣∣∣∣∣

d e f

a b c

g h i

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
und

∣∣∣∣∣∣

c b a

f e d

i h g

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
etc. (8.14)
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Kapitel 9

Das Vektorprodukt

In diesem Kapitel wollen wir eine neue Vektoroperation, das sogenannte Vektorprodukt zweier Vek-
toren, kennenlernen. Wir benennen zuerst gewisse Eigenschaften, die dieses Vektorprodukt aufweisen
soll und definieren es auf diese Weise. Anschliessend werden wir aus diesen Eigenschaften folgern,
wie sich das Vektorprodukt ganz konkret berechnen lässt, damit es eben diese Eigenschaften erfüllt.

Dieses Vorgehen ist für uns eher ungewohnt. Bisher wurde – nicht nur in der Vektorgeometrie
– eine neue Operation jeweils einfach durch ihre Rechenvorschrift vorgestellt und anschliessend
wurde geschaut, welche Eigenschaften sie folglich aufweist. Letzte grosse Beispiele hierfür waren das
Skalarprodukt zweier Vektoren oder die dreireihige Determinante bei einem 3x3-Gleichungssystem.
Nun werden wir aber eben zuerst die Eigenschaften deklarieren, die unser Vektorprodukt auszeichnen
sollen, und danach werden wir schauen, wie das Vektorprodukt folglich zu berechnen sein muss.

9.1 Die Eigenschaften des Vektorproduktes

Definition des Vektorproduktes ~a×~b aufgrund seiner Eigenschaften

Gegeben seien zwei Vektoren ~a,~b ∈ R
3.

Das Vektorprodukt ~a×~b wird durch die folgenden vier Eigenschaften wohldefiniert:

1. ~a×~b ist selber wieder ein Vektor ~c ∈ R
3:

Vektorprodukt: × : (R3,R3) −→ R
3

(~a,~b ) 7−→ ~c = ~a×~b

Sind ~a und ~b kollinear, so ergibt ihr Vektorprodukt den Nullvektor ~0.

2. ~c = ~a×~b steht orthogonal zu jedem der beiden Eingabevektoren ~a und ~b:

~c ⊥ ~a und ~c ⊥ ~b

3. Der Betrag c = |~a ×~b | ist gleich der Flächenzahl des Parallelogramms, das
durch die Vektoren ~a und ~b aufgespannt wird.

4. Die drei Vektoren ~a, ~b und ~c = ~a×~b bilden in dieser Reihenfolge zusammen ein
Rechtssystem.

N.B.: Das Vektorprodukt wird oft auch als Kreuzprodukt bezeichnet, z.B. auch in GeoGebra,
was sich im Symbol × widerspiegelt. In manchen Quellen wird als Zeichen aber auch ein ∧ verwendet,
damit keine Verwechslung mit allfälligen Buchstaben x entsteht.
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Schrittweise Überlegungen zur Eindeutigkeit des Vektorproduktes

Wir wollen uns besser rasch überlegen, dass obige Eigenschaften ein eindeutiges Resultat für das
Vektorprodukt ~a×~b definieren, denn das ist doch eine sinnvolle Forderung an eine neue Operation.

i. Die erste Eigenschaft im Kasten auf der vorangegangenen Seite ist noch keine grosse Ein-
schränkung. Es wird nur definiert, welcher Art Resultat des Vektorproduktes sein soll, nämlich
ein Vektor, also ein Objekt mit drei Komponenten.

ii. Die zweite Eigenschaft, also dass ~a×~b senkrecht zu ~a und ~b steht, ist aber wirklich eine starke
Forderung. Sofern ~a und ~b nicht kollinear stehen, ist aber klar, dass es eine ganz eindeutige
Richtung senkrecht zu den beiden Eingabevektoren gibt.

Spezialfall: Sind ~a und ~b kollinear, so verschwindet das Vektorprodukt resp. es ergibt sich der
Nullvektor ~0. Damit ist das Resultat für diesen Fall eindeutig festgelegt.

iii. Die dritte Eigenschaft legt die Länge des Resultatvektors ~c = ~a × ~b fest. Der Betrag |~a ×
~b | entspricht der Flächenzahl des von ~a und ~b aufgespannten Parallelogramms. Mit ganz
herkömmlicher Trigonometrie lässt sich rasch zeigen, dass diese Länge resp. Fläche durch

|~c | = |~a×~b | = a · b · sinϕ (9.1)

gegeben ist, wobei ϕ für den Winkel zwischen den beiden Vektoren ~a und ~b steht.

Für alle Vektorpaare ~a und ~b gilt: 0◦ ≤ ϕ ≤ 180◦. Und somit auch: 0 ≤ sinϕ ≤ 1.

Das passt auch bestens mit dem Spezialfall zusammen: Sind ~a und ~b kollinear, so spannen sie
kein Parallelogramm auf resp. dessen Fläche schrumpft auf 0 zusammen. Es ist also sinnvoll,
dass das Resultat des Vektorproduktes in diesem Fall der Nullvektor ~0 ist.

iv. Sind Richtung und Länge durch die zweite und die dritte Eigenschaft vorgegeben, so gäbe
es für ~a × ~b immer noch zwei Möglichkeiten, nämlich zwei gleich lange Vektoren, die ein-
ander entgegengesetzt gerichtet sind. Welche dieser beiden Möglichkeiten das Resultat des
Vektorproduktes sein soll, wird durch die vierte Eigenschaft festgelegt. Dazu definieren wir:

Orientierung eines räumlichen Dreibeins – Rechtssystem

Eine dreidimensionale Basis (~a,~b,~c ) bildet ein sogenanntes Rechtssystem resp. ist
positiv orientiert, wenn die drei Vektoren in der angegebenen Reihenfolge durch
Daumen, Zeige- und Mittelfinger der rechten Hand dargestellt werden können.

In den folgenden Figuren bildet das Vektortripel (~a,~b,~c ) in den beiden Darstellungen
links je ein Rechtssystem dar, in den anderen beiden nicht.

Beim Vektorprodukt bilden (~a,~b,~a×~b ) ein Rechtssystem, wodurch die Blickrichtung von ~a×~b

festgelegt wird und schliesslich das Vektorprodukt ~a×~b eindeutig definiert ist.

Abb. 9.1 fasst alle Überlegungen in einer einzigen Grafik zusammen.
Aber wie lässt sich denn nun der Vektor ~c = ~a ×~b ganz konkret aus den Komponenten von ~a

und ~b berechnen? Genau diese Frage wird im nächsten Abschnitt beantwortet.
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Abbildung 9.1: Das Vektorprodukt ~a×~b zweier Vektoren ~a und~b liefert als Resultat einen eindeutigen
Vektor ~c. Dieser steht senkrecht zu ~a und zu ~b, ist also ein Normalenvektor der Ebene E, die ~a und ~b
enthält. Der Betrag von ~c entspricht der Flächenzahl des von ~a und~b aufgespannten Parallelogramms
und die drei Vektoren ~a, ~b und ~c bilden ein Rechtssystem.

9.2 Die Berechnung des Vektorproduktes

Damit wir anschliessend ohne Unterbruch die konkrete Berechnung des Vektorproduktes herleiten
können, empfehlen sich ein paar Überlegungen vorweg:

Nicht-Kommutativität: Da ~a, ~b und ~a × ~b in dieser Reihenfolge ein Rechtssystem bilden, kann
das Vektorprodukt nicht kommutativ sein: ~a ×~b 6= ~b × ~a. Tatsächlich zeigt der Vektor ~b × ~a

genau in die Gegenrichtung von ~a×~b, ist aber gleich lang wie dieser, denn am Parallelogramm,
das von ~a und ~b aufgespannt wird, hat sich durch die Vertauschung der Reihenfolge nichts
geändert. Deshalb muss gelten:

~b× ~a = −(~a×~b ) (9.2)

Skalierung eines Eingabevektors: Multipliziere ich einen der beiden Eingabevektoren mit einem
Skalar k ∈ R, so ändere ich dadurch seine Länge, aber nicht seine Richtung. Die Fläche des
Parallelogramms wird dadurch ebenfalls mit dem Faktor k skaliert, denn es wird ja einfach
eine Seite mit diesem Faktor gestreckt. Folglich gilt für das Vektorprodukt:

(k · ~a )×~b = ~a× (k ·~b ) = k · (~a×~b ) (9.3)

Distributivität: Schliesslich gilt für das Vektorprodukt ein Distributivgesetz:

~a× (~b+ ~c ) = (~a×~b ) + (~a× ~c ) (9.4)

Auch dieses Distributivgesetz lässt sich unmittelbar aus den Eigenschaften des Vektorproduk-
tes ableiten. Es geht um die Betrachtung von Parallelogrammflächen, wie Abb. 9.2 für drei
komplanare Vektoren ~a, ~b und ~c zeigt. Die Überlegung liesse sich auf eine nicht-komplanare
Situation erweitern, worauf wir hier aber verzichten wollen.

Vektorprodukte der kartesischen Basisvektoren: Die Vektoren der kartesischen Basis (= Stan-
dardbasis) sind die Einheitsvektoren ~e1, ~e2 und ~e3, die in die Richtungen der drei Koordina-
tenachsen zeigen. ~e1, ~e2 und ~e3 bilden in dieser Reihenfolge ein Rechtssystem, woraus folgt:

~e1 × ~e2 = ~e3 ~e2 × ~e3 = ~e1 ~e3 × ~e1 = ~e2

~e2 × ~e1 = −~e3 ~e3 × ~e2 = −~e1 ~e1 × ~e3 = −~e2
(9.5)
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Abbildung 9.2: Die zwei Parallelogramme ABDC und CDFE haben zusammen eine Fläche, die
genau derjenigen des Parallelogramms ABFE entspricht. Folglich ist das Vektorprodukt distributiv:
(~a×~b ) + (~a× ~c ) = ~a× (~b+ ~c ).

Das Vektorprodukt in Komponenten

Nun wollen wir die drei Komponenten von ~a×~b durch diejenigen von ~a und ~b ausdrücken.
Zunächst lassen sich zwei Vektoren ~a und ~b je als Linearkombination der kartesischen Basisvek-

toren ausdrücken:

~a =




a1
a2
a3


 = a1 · ~e1 + a2 · ~e2 + a3 · ~e3 und ~b =




b1
b2
b3


 = b1 · ~e1 + b2 · ~e2 + b3 · ~e3

Damit können wir jetzt für das Vektorprodukt schreiben:

~a×~b = ~a× (b1 · ~e1 + b2 · ~e2 + b3 · ~e3)
(9.4)
= ~a× (b1 · ~e1) + ~a× (b2 · ~e2) + ~a× (b3 · ~e3)

(9.3)
= b1 · (~a× ~e1) + b2 · (~a× ~e2) + b3 · (~a× ~e3)

= b1 ·
(
(a1 · ~e1 + a2 · ~e2 + a3 · ~e3)× ~e1

)

+ b2 ·
(
(a1 · ~e1 + a2 · ~e2 + a3 · ~e3)× ~e2

)

+ b3 ·
(
(a1 · ~e1 + a2 · ~e2 + a3 · ~e3)× ~e3

)

(9.4)
= b1 ·

(
a1 · (~e1 × ~e1)︸ ︷︷ ︸

=~0

+ a2 · (~e2 × ~e1)︸ ︷︷ ︸
=−~e3

+ a3 · (~e3 × ~e1)︸ ︷︷ ︸
=~e2

)

+ b2 ·
(
a1 · (~e1 × ~e2)︸ ︷︷ ︸

=~e3

+ a2 · (~e2 × ~e2)︸ ︷︷ ︸
=~0

+ a3 · (~e3 × ~e2)︸ ︷︷ ︸
=−~e1

)

+ b3 ·
(
a1 · (~e1 × ~e3)︸ ︷︷ ︸

=−~e2

+ a2 · (~e2 × ~e3)︸ ︷︷ ︸
=~e1

+ a3 · (~e3 × ~e3)︸ ︷︷ ︸
=~0

)

(9.5)
= −a2b1 · ~e3 + a3b1 · ~e2 + a1b2 · ~e3 − a3b2 · ~e1 − a1b3 · ~e2 + a2b3 · ~e1
= (a2b3 − a3b2) · ~e1 + (a3b1 − a1b3) · ~e2 + (a1b2 − a2b1) · ~e3

=




a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1




Somit haben wir herausgefunden, wie das Vektorprodukt zweier Vektoren ~a und ~b aus deren Kom-
ponenten berechnet wird.
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Dieses Resultat wollen wir gleich nochmals festhalten und auch noch etwas anders schreiben:

Die Berechnung des Vektorproduktes aus den Vektorkomponenten

Das Vektorprodukt ~a×~b zweier Vektoren

~a =




a1
a2
a3


 und ~b =




b1
b2
b3




berechnet sich wie folgt aus den deren Komponenten:

~a×~b =




a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 =

∣∣∣∣∣∣

~e1 ~e2 ~e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
(9.6)

Das Vektorprodukt kann also als Determinante aus den drei kartesischen Basis-
vektoren ~e1, ~e2 und ~e3 und den Komponenten von ~a und ~b aufgefasst werden.

Anmerkungen zur Berechnung des Vektorproduktes

• Die ausgeschriebene Determinante lautet zunächst:

~a×~b =

∣∣∣∣∣∣

~e1 ~e2 ~e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= ~e1 ·

∣∣∣∣
a2 a3
b2 b3

∣∣∣∣+ ~e3 ·
∣∣∣∣
a3 a1
b3 b1

∣∣∣∣+ ~e3 ·
∣∣∣∣
a1 a2
b1 b2

∣∣∣∣

In den Komponenten des Vektorproduktes ~a ×~b stehen somit 2x2-Determinanten aus Kom-
ponenten von ~a und ~b.

• Sind ~a und ~b kollinear, so sind zwei Zeilen der Determinante bis auf einen Faktor k identisch
und somit ergibt sich automatisch 0. Der Spezialfall kollinearer Vektoren ist also abgedeckt.
Es gilt:

~b = k · ~a ⇒ ~a×~b = 0

• Mit dem Vektorprodukt haben wir eine weitere Möglichkeit zur Berechnung von Winkeln
zwischen Vektoren erhalten. Für den Winkel ϕ zwischen den Vektoren ~a und ~b gilt:

|~a×~b | = a · b · sinϕ ⇔ sinϕ =
|~a×~b |
a · b (9.7)

Mit dieser Methode können wir allerdings nicht gut zwischen spitzen Winkeln und stumpfen
Winkeln unterscheiden. Denn für 0◦ ≤ ϕ ≤ 90◦ durchläuft sinϕ alle Wert von 0 bis 1, wie
auch für 90◦ ≤ ϕ ≤ 180◦.

Dennoch ist diese Winkelberechnungsmethode manchmal ganz praktisch.

• Mit Abstand am häufigsten werden wir das Vektorprodukt dazu verwenden einen Vektor ~c zu
berechnen, der zu zwei gegebenen Vektoren ~a und ~b senkrecht steht.

So lässt sich z.B. aus der PD einer Ebene, die ja zwei Richtungsvektoren in der Ebene enthält,
im Nu der Normalenvektor der Ebene und somit ihre KG bestimmen – viel schneller als bis
anhin!
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9.3 Das Spatprodukt

Definition: Der Spat ist der Körper, der von drei Paaren paralleler Ebenen begrenzt wird.

Quader: Der Quader ist der Spezialfall eines Spats mit lauter rechteckigen Seitenflächen.

Spat und Tetraeder: Jeder Spat lässt sich in sechs volumengleiche Tetraeder zerlegen.

Diese Aussage wird in Abb. 9.3 illustriert. Zunächst kann der Spat in zwei identische Prismen
aufgeteilt werden. Diese wiederum lassen sich in je drei Tetraeder mit paarweise gleichen
Grundflächen und Höhen zerlegen.

Spatvolumen: Das Volumen eines Spats ergibt sich aus dem Produkt von Grundfläche G und
zugehöriger Höhe h (ohne Beweis):

VSpat = G · h

Gemäss voriger Überlegung (Abb. 9.3) entspricht das Spatvolumen aber auch dem Sechsfachen
eines Tetraedervolumens. Daraus lässt sich herleiten, dass das Volumen eines Spats, der durch
drei Kantenvektoren ~a, ~b und ~c aufgespannt wird, gegeben ist durch:

VSpat = 6 · VTetraeder =
∣∣~a · (~b× ~c )

∣∣ =

∣∣∣∣∣∣∣

∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣

∣∣∣∣∣∣∣
(9.8)

Das Spatvolumen ist also der Betrag des sogenannten Spatprodukts ~a · (~b × ~c ), das eine
Aneinanderreihung von Vektor- und Skalarprodukt ist. Offenbar erhält man das Resultat dieses
Spatproduktes direkt durch Berechnung der aus ~a, ~b und ~c gebildeten Determinante (Beweis
in den Übungen).

Abbildung 9.3: Ein Spat kann in zwei volumengleiche Prismen und jedes dieser Prismen in drei volu-
mengleiche Tetraeder zerlegt werden. Der Spat besteht somit aus sechs volumengleichen Tetraedern.
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