
Übungen zur Vektorgeometrie – Lösungen Serie I

1. (a) Die drei Vektoren lauten:

~a =

(

2

1

)

~b =

(

4

−2

)

~c =

(

1

4

)

(b) Wir rechnen (Addition/Subtraktion):

~d = ~a+ ~c =

(

2

1

)

+

(

1

4

)

=

(

2 + 1

1 + 4

)

=

(

3

5

)

~e = ~b− ~c =

(

4

−2

)

−
(

1

4

)

=

(

4− 1

−2− 4

)

=

(

3

−6

)

Hier die grafische Darstellung:

(c) Ebenso erhalten wir:

~f = ~a− 1

2
·~b− ~c =

(

2

1

)

− 1

2

(

4

−2

)

−
(

1

4

)

=

(

2− 1

2
· 4− 1

1− 1

2
· (−2)− 4

)

=

(

−1

−2

)

(d) Wir schliessen rechnerisch auf den zu subtrahierenden Vektor ~g:

~b− ~g
!
= ~c ⇔ ~g = ~b− ~c =

(

4

−2

)

−
(

1

4

)

=

(

3

−6

)

Das wussten wir ja bereits aus Aufgabe (b).

2. Wir führen die skalare Multiplikation aus:

−6
√
2 ·

(

2
√
2

1/3

)

=

(

−24

−2
√
2

)
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3. Bei kollinearen oder linear abhängigen zwei Vektoren ~a und ~b lässt sich der eine Vektor als reelles
Vielfaches des anderen schreiben. Es muss also gelten:

~b = k · ~a mit k ∈ R

Ein in Frage kommender Faktor k lässt sich bereits aus der Betrachtung einer einzelnen Komponente
ermitteln:

(

bx
by

)

= ~b = k · ~a =

(

k · ax
k · ay

)

⇒ bx = k · ax

Die Frage ist dann, ob derselbe k-Wert auch die y-Komponenten miteinadner verknüpft. Nur wenn
dies der Fall ist, gilt tatsächlich ~b = k · ~a. Tatsächlich könnte man hier von einem überbstimmten

Gleichungssystem für die Zahl k sprechen:

~b
!
= k · ~a ⇒

∣

∣

∣

∣

∣

bx
!
= k · ax

by
!
= k · ay

∣

∣

∣

∣

∣

⇔
∣

∣

∣

∣

∣

k = bx
ax

k =
by
ay

∣

∣

∣

∣

∣

Wir haben zwei Gleichungen, aber nur eine Unbekannte k. Daher handelt es sich um ein überbestimmtes
Gleichungssystems, das im Allgemeinen nur “per Zufall” eine Lösung hat.

Probieren wir es mit den Vektoren ~a und ~b aus:

~a =

(

−3√
2

)

~b =

(

−1

−
√

2/3

)

⇒ kx =
bx
ax

=
−1

−3
=

1

3
und ky =

by
ay

=
−
√

2/3√
2

= − 1√
3
6= kx

Somit ist der Faktor in der x-Komponente ein anderer als in der y-Komponente und die beiden Vektoren
~a und ~b sind nicht kollinear.

Man kann diese Überprüfung nun grundsätzlich für jedes Paar von Vektoren durchführen. Das gibt
offensichtlich viel zu tun:

~a,~c : kx =
cx
ax

=
3

−3
= −1 und ky =

cy
ay

=

√
2√
2
= 1 6= kx ⇒ nicht kollinear

~a, ~d : kx =
dx
ax

=
6
√
2

−3
= −2

√
2 und ky =

dy
ay

=
−4√
2
= −2

√
2 = kx ⇒ kollinear!

~a,~e : kx =
ex
ax

=

√

3/2

−3
= − 1√

6
und ky =

ey
ay

=

√
3/3√
2

=
1√
6
6= kx ⇒ nicht kollinear

~b,~c : kx =
cx
bx

=
3

−1
= −3 und ky =

cy
by

=

√
2

−
√

2/3
= −

√
3 6= kx ⇒ nicht kollinear

~b, ~d : kx =
dx
bx

=
6
√
2

−1
= −6

√
2 und ky =

dy
by

=
−4

−
√

2/3
= 2

√
6 6= kx ⇒ nicht kollinear

~b,~e : kx =
ex
bx

=

√

3/2

−1
= −

√

3

2
und ky =

ey
by

=

√
3/3

−
√

2/3
= − 1√

2
6= kx ⇒ nicht kollinear

~c, ~d : kx =
dx
cx

=
6
√
2

3
= 2

√
2 und ky =

dy
cy

=
−4√
2
= −2

√
2 6= kx ⇒ nicht kollinear

~c,~e : kx =
ex
cx

=

√

3/2

3
=

1√
6

und ky =
ey
cy

=

√
3/3√
2

=
1√
6
6= kx ⇒ kollinear!

~d,~e : kx =
ex
dx

=

√

3/2

6
√
2

=
1

4
√
3

und ky =
ey
dy

=

√
3/3

−4
= − 1

4
√
3
6= kx ⇒ nicht kollinear
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Schneller sind wir allerdings, wenn wir die Steigung jedes Vektors im R
2 berechnen. Sind die Steigungen

zu zwei Vektoren dieselben, so sind sie kollinear.

Der Vektor ~a =
(

ax
ay

)

entspricht einem Schritt um ax in x-Richtung, während ein Schritt um ay in
y-Richtung erfolgt. Folglich ist die zugehörige Steigung gegeben durch:

ma =
ay
ax

=

√
2

−3
= −

√
2

3

Auf dieselbe Weise berechnen wir:

mb =
by
bx

=
−
√

2/3

−1
=

√

2

3
mc =

cy
cx

=

√
2

3

md =
dy
dx

=
−4

6
√
2
= −

√
2

3
me =

ey
ex

=

√
3/3

√

3/2
=

√
2

3

Somit sind die Vektoren ~a und ~d kollinear und ebenso die Vektoren ~c und ~e.

In drei Dimensionen gibt es dann allerdings keine solchen Steigungen, weshalb wir auf die mühsamere
Überprüfung von oben zurückgreifen müssen.

4. (a) Es geht um den Unterschied zwischen B und C in der x- und in der y-Koordinate. Der Vektor−−→
BC soll von B nach C führen und muss daher diese Unterschiede als Komponenten aufweisen:

xC − xB = 6− 1 = 5 und yC − yB = −1− 6 = −7 ⇒ −−→
BC =

(

5

−7

)

(b) Das Dreieck ABC kann über jede seiner drei Seiten hinaus zu einem Parallelogramm ergänzt
werden:
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Es gibt somit drei Möglichkeiten für den Eckpunkt D. Von A aus können wir beispielsweise um

den Vektor ±−−→
BC =

(

5

−7

)

verschieben, um zu den möglichen Eckpunkten D1 und D2 zu gelangen,

von B aus um den Vektor
−→
AC =

(

8

−6

)

, um auch noch D3 zu ermitteln:

A um −−−→
BC verschieben ⇒

(

xA −−−→
BCx, yA −−−→

BCy

)

= (−2− 5, 5 + 7) = D1(−7, 12)

A um
−−→
BC verschieben ⇒

(

xA +
−−→
BCx, yA +

−−→
BCy

)

= (−2 + 5, 5− 7) = D2(3,−2)

B um
−→
AC verschieben ⇒

(

xB +
−→
ACx, yB +

−→
ACy

)

= (1 + 8, 6− 6) = D3(9, 0)

Das entspricht genau den Punkten D1, D2 und D3 in der Grafik auf der vorangegangenen Seite.

(c) Um zum Mittelpunkt zwischen A und C zu gelangen, müssen wir beispielsweise von A aus um

die Hälfte des Vektors
−→
AC in Richtung C gehen. Daraus folgt:

A um
1

2

−→
AC verschieben ⇒

(

xA +
1

2

−→
ACx, yA +

1

2

−→
ACy

)

= (−2 + 4, 5 − 3) = MAC(2, 2)

Diese Lösung ist auch in der vorigen Grafik eingetragen.

(d) Wir benutzen nun die bereits in der Lösung zu Aufgabe 3 vorgestellte Idee des eigentlich über-
bestimmten Gleichungssystems für den Faktor k. Allerdings haben wir nun mit dem Parameter t
eine zweite Unbekannte, sodass dieses Gleichungssystem eigentlich Lösung(en) aufweisen sollte.
Wir setzen an:

(

t

1/t

)

= k · −−→AB = k ·
(

3

1

)

⇒
∣

∣

∣

∣

t = 3k
1

t
= k

∣

∣

∣

∣

Wir setzen den Ausdruck für k aus der unteren Gleichung in die obere Gleichung ein und erhalten:

t = 3k = 3 · 1
t

⇒ t2 = 3 ⇒ t = ±
√
3

5. (a) Bevor wir diese Aufgabe lösen, sei angemerkt, dass sich im R
2 jeder Vektor ~w als eindeutige

Linearkombination

~w = s · ~u+ t · ~v mit s, t ∈ R

von zwei anderen Vektoren ~u und ~v schreiben lässt, solange ~u und ~v nicht kollinear sind. Das Wort
eindeutig meint dabei, dass die beiden Faktoren s und t eindeutig sind, dass also bei vorgegebenen
~u und ~v der Vektor ~w nur auf eine ganz bestimmte Weise aus diesen beiden Vektoren aufaddiert
werden kann.

Wir merken uns: Aus zwei nicht kollinearen Vektoren lassen sich durch Linearkombination sämt-
liche Vektoren im R

2 bilden. Das hat natürlich mit der 2-Dimensionalität von R
2 zu tun!

Nun zur eigentlichen Lösung. Aus der Linearkombinationsgleichung folgt ein 2x2-Gleichungssystem
für die beiden Faktoren s und t, das wir wie gewohnt lösen:

~c = s · ~a+ t ·~b ⇔
(

cx
cy

)

= s ·
(

ax
ay

)

+ t ·
(

bx
by

)

⇔
∣

∣

∣

∣

cx = s · ax + t · bx
cy = s · ay + t · by

∣

∣

∣

∣

⇒
∣

∣

∣

∣

1 = 2s+ 4t
4 = s− 2t

∣

∣

∣

∣

⇔
∣

∣

∣

∣

1 = 2s+ 4t
8 = 2s− 4t

∣

∣

∣

∣

⇒ 9 = 4s ⇔ s =
9

4

⇒ 1 = 2 · 9
4
+ 4t ⇔ 1− 9

2
= 4t ⇔ t =

1− 9

2

4
=

−7

2

4
= −7

8

⇒ ~c =
9

4
· ~a− 7

8
·~b
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Diese Lösung können wir auch gut grafisch verstehen:

(b) Natürlich könnten wir wieder genau gleich vorgehen wie unter (a), also je ein Gleichungssystem
lösen. Das wäre aber viel zu umständlich, denn die Lösung aus (a) zeigt ja bereits, wie die drei
Vektoren miteinander verbunden sind. Wir brauchen sie nur nach ~a oder ~b aufzulösen:

~c =
9

4
~a− 7

8
~b ⇔ 8~c = 18~a− 7~b

⇔ 18~a = 7~b+ 8~c ⇔ ~a =
7

18
~b+

4

9
~c

⇔ 7~b = 18~a− 8~c ⇔ ~b =
18

7
~a− 8

7
~c
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