
Übungen zur Vektorgeometrie – Lösungen Serie II

1. Bei jeder Lösung steht zuerst die einfachst mögliche PD, was die Komponenten des Richtungsvektors
angeht, und danach noch eine zweite Möglichkeit. Die Aufvektoren sind stets beliebig austauschbar!

(a) y = 2x− 4 ⇒ ~Pa(r) =

(

2

0

)

+ r ·
(

1

2

)

⇔ ~Pa(s) =

(

1

−2

)

+ s ·
(

2

4

)

(b) 4x+ 6y = 5 ⇒ ~Pb(r) =

(

5/4

0

)

+ r ·
(

3

−2

)

⇔ ~Pb(s) =

(

0

5/6

)

+ s ·
(−3

2

)

(c) 3x− 8y = 12 ⇒ ~Pc(r) =

(

4

0

)

+ r ·
(

8

3

)

⇔ ~Pc(s) =

(

0

−3/2

)

+ s ·
(

4

3/2

)

(d) x = −2 ⇒ ~Pd(r) =

(−2

0

)

+ r ·
(

0

1

)

⇔ ~Pd(s) =

(−2

100

)

+ s ·
(

0

−1

)

Hier die zugehörigen Geraden im Koordinatensystem:

2. Zunächst die zugehörigen Geradengleichungen, wobei die implizite Form nicht eindeutig ist, aber punkto
Koeffizienten so einfach wie möglich gewählt wurde:

g : ~Pg(r) =

(−1

2

)

+ r ·
(

3

−3

)

⇒ y = −x+ 1 ⇔ x+ y = 1

h : ~Ph(s) =

(

1

−1

)

+ s ·
(−3

1

)

⇒ y = −1

3
x− 2

3
⇔ x+ 3y = −2

i : ~Pi(t) =

(

2

3

)

+ t ·
(−1

0

)

⇒ y = 3 Horizontale!

j : ~Pj(u) =

(

5

−1

)

+ u ·
(

0

3

)

⇒ x = 5 Vertikale! ⇒ keine explizite Form möglich!

k : ~Pk(v) =

(−12

0

)

+ v ·
(

5

1

)

⇒ y =
1

5
x+

12

5
⇔ x− 5y = −12

l : ~Pl(w) =

(

2

8

)

+ w ·
(

1

−3

)

⇒ y = −3x+ 14 ⇔ 3x+ y = 14

Das Koordinatensystem mit den eingetragenen Geraden befindet sich oben auf der nächsten Seite.
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Bei den Geraden k und l muss man sich gut überlegen, wie sie ins Bild kommen, weil die gegebenen
Aufpunkte ausserhalb des sichtbaren Bereichs liegen!

Weitere Überlegungen zur Bearbeitung der Aufgabe 2:

• Aus dem Richtungsvektor ~v lässt sich jeweils ganz direkt die Steigung m bestimmen. Es gilt stets:

~v =

(

vx
vy

)

⇒ m =
vy
vx

→ lässt sich oft noch kürzen!

Bsp.: ~vg =

(

3

−3

)

⇒ mg =
−3

3
= −1

~vh =

(−3

1

)

⇒ mh =
1

−3
= −1

3

So wird auch klar, weshalb es bei j keine explizite Geradengleichung geben kann, denn bei der
Steigungsberechnung müsste durch vx = 0 dividiert werden. Die Steigung einer Vertikalen ist
quasi unendlich gross.

• Kennt man mal die Steigung m, so kann der y-Achsenabschnitt q im Prinzip stets durch das
Einsetzen des Aufpunktes A in den Ansatz y = mx+ q ermittelt werden:

Bsp.: mg = −1, Ag(−1, 2) ⇒ 2 = −(−1) + q ⇔ q = 1 ⇒ y = −x+ 1

mh = −1

3
, Ah(1,−1) ⇒ −1 = −1

3
· 1 + q ⇔ q = −2

3
⇒ y = −1

3
x− 2

3

• Aus der expliziten Geradengleichung lässt sich durch Äquivalenzumformungen ganz einfach eine
implizite Geradengleichung gewinnen.

Bsp.: y = −1

3
x− 2

3
⇔ 3y = −x− 2 ⇔ x+ 3y = −2

• Horizontalen und Vertikalen sind besonders einfach: y = a beschreibt eine Horizontale auf der
Höhe a, x = b eine Vertikale bei der Stelle b. Die zugehörigen Parameterdarstellung haben im
Richtungsvektor jeweils eine Komponente mit Wert 0.
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3. Hier geht es darum die Schwerpunktformel zu verwenden. Im Unterricht haben wir gelernt, dass der
Schwerpunkt-Ortsvektor ~S von vier Massen mA, mB , mC , mD an den Orten A, B, C, D gegeben ist
durch die mit den Massen gewichtete Mittelung der einzelnen Ortsvektoren:

~S =
mA · ~A+mB · ~B +mC · ~C +mD · ~D

mA +mB +mC +mD

Gemäss Aufgabenstellung soll der Schwerpunkt im Ursprung (0, 0) zu liegen kommen. Daraus folgern
wir:

mA
~A+mB

~B +mC
~C +mD

~D

mA +mB +mC +mD
= ~S

!
= 0 | · (mA + . . .+mD)

⇔ mA
~A+mB

~B +mC
~C +mD

~D = 0 | −mA
~A−mB

~B −mC
~C

⇔ mD
~D = −mA

~A−mB
~B −mC

~C | : mD

⇔ ~D = − 1

mD

(

mA
~A+mB

~B +mC
~C
)

|Werte einsetzen

= − 1

10
·
(

2 ·
(

2

3

)

+ 3 ·
(−4

2

)

+ 5 ·
(−1

−6

))

= − 1

10
·
(

4− 12− 5

6 + 6− 30

)

=

(

13/10

18/10

)

=

(

13/10

9/5

)

Zum Abschluss der Aufgabe noch eine Veranschaulichung. Ich habe die Massen in ein Koordinatensy-
stem eingezeichnet und den Radius des einzelnen Massenpunktes jeweils proportional zu

√
m eingetra-

gen, sodass wir ein Gefühl für den Einfluss der jeweiligen Masse erhalten:

Wir sehen, wie die Masse mD vor allem so platziert werden muss, dass sie die weite entfernte und
einigermassen grosse Masse mC kompensieren und den Schwerpunkt in den Ursprung bringen kann.
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4. Das ist effektiv kein Problem! Die Steigung einer Gerade ergibt sich jeweils aus einem Steigungsdreieck.
Es ist der Quotient aus stehender Seite ∆y und liegender Seite ∆x:

m :=
∆y

∆x

Bei der Angabe eines Richtungsvektors ~v =
(

∆x
∆y

)

zu einer Gerade mit Steigung m dürfen wir uns die
Länge von ~v beliebig vorgeben. Insbesondere dürfen wir fordern, dass der Vektor die x-Komponente
vx = ∆x = 1 aufweist. Dann beträgt der zugehörige Schritt in y-Richtung:

∆y = m ·∆x = m · 1 = m

Demnach können wir einen zu einer bestimmten Steigung m gehörenden Richtungsvektor – ohne
irgendetwas rechnen zu müssen – stets wie folgt notieren:

~v =

(

∆x

∆y

)

=

(

1

m

)

5. (a) Sind zwei Vektoren kollinear, so ist der eine ein reelles Vielfaches des anderen: ~b = k ·~a mit k ∈ R.

Das lässt sich überprüfen, indem wir aus den x-Komponenten, also aus bx = k · ax, den Skalie-
rungsfaktor k gewinnen und anschliessend schauen, ob derselbe Faktor auch by = k · ay erfüllt.

Im Zweidimensionalen können wir alternativ die beiden Vektoren als Richtungsvektoren zweier
Geraden auffassen und die zugehörigen Steigungen ma =

ay
ax

resp. mb =
by
bx

berechnen. Stimmen
beide Steigungswerte überein, ma = mb, so sind die Vektoren kollinear.

(b) Betrachten wir Repräsentanten verschiedener orthogonaler Vektorpaare:

Ein paar Beobachtungen:

• Bei gleich langen Vektoren treten dieselben Zahlen in den Komponenten der beiden ortho-
gonalen Vektoren auf. Allerdings werden dabei die Komponenten getauscht und in einer
Komponente muss das Vorzeichen gewechselt werden:

(

1

1

)

↔
(−1

1

)

und

(

3

1

)

↔
(

1

−3

)

• Ist ein Vektor kürzer, so kann er durch einen geeigneten Faktor so vergrössert werden, dass
er wieder gleich lang ist wie der andere Vektor und dann gilt wieder das gleiche Prinzip wie
eben beschrieben:

2 ·
(−2

−1

)

=

(−4

−2

)

↔
(−2

4

)

und
5

3
·
(

0

−3

)

=

(

0

−5

)

↔
(

5

0

)
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• Multipliziert man jeweils die beiden x-Komponenten miteinander und macht dasselbe mit den
beiden y-Komponenten, so ergibt sich stets die Gegenzahl:

(

1

1

)

und

(−1

1

)

⇒ 1 · (−1) = −1 und 1 · 1 = 1

(

3

1

)

und

(

1

−3

)

⇒ 3 · 1 = 3 und 1 · (−3) = −3

(−2

4

)

und

(−2

−1

)

⇒ (−2) · (−2) = 4 und 4 · (−1) = −4

(

5

0

)

und

(

0

−3

)

⇒ 5 · 0 = 0 und 0 · (−3) = 0 (= −0)

Addiert man jeweils die beiden Komponentenprodukte zweier orthogonaler Vektoren, so ergibt
sich anscheinend stets der Wert 0:

(

ax
ay

)

und

(

bx
by

)

⇒ ax · bx + ay · by ?
= 0 ⇒ Falls ja → orthogonal!

(

1

1

)

und

(−1

1

)

⇒ 1 · (−1) + 1 · 1 = −1 + 1 = 0

(

3

1

)

und

(

1

−3

)

⇒ 3 · 1 + 1 · (−3) = 3− 3 = 0

(−2

4

)

und

(−2

−1

)

⇒ (−2) · (−2) + 4 · (−1) = 4− 4 = 0

(

5

0

)

und

(

0

−3

)

⇒ 5 · 0 + 0 · (−3) = 0 + 0 = 0

Das scheint ein gutes Prinzip zu sein! Können wir es allgemein beweisen?

Tatsächlich ist das gar nicht weiter schwierig, wenn wir uns an eine Aussage zu den Steigungen
von zueinander senkrecht stehenden Geraden erinnern: Ist m die Steigung einer Geraden g und
m⊥ die Steigung einer dazu senkrecht stehenden Gerade h, so gilt stets:

m ·m⊥ = −1

Der Grund dafür ergibt sich aus der folgenden Grafik:
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Sind nun allerdings die Steigungen der beiden Geraden auf diese Weise miteinander verknüpft, so
können wir mit dem Resultat aus Aufgabe 4 sofort folgern:

~a =

(

1

m

)

und ~b =

(

1

m⊥

)

mit m ·m⊥ = −1

⇒ ax · bx + ay · by = 1 · 1 +m ·m⊥ = 1 + (−1) = 0

Relativ bald werden wir nochmals viel ausführlicher über Winkel zwischen Vektoren nachdenken
und dann sogar in der Lage sein, beliebige solche Winkel aus den Vektoren zu berechnen. Dabei
spielt das sogenannte Skalarprodukt ~a · ~b, das du nun bereits kennengelernt hast, die zentrale
Rolle:

Skalarprodukt zweier Vektoren: ~a ·~b := axbx + ayby

Bereits jetzt kannst du dir merken: Zwei Vektoren stehen genau dann senkrecht zueinander, wenn
ihr Skalarprodukt ~a ·~b = 0 ist.

Weiter kannst du bereits jetzt erahnen, dass es dieses Skalarprodukt dann auch im dreidimensio-
nalen Raum geben wird – es ist ja ganz offensichtlich, wie es auf dreikomponentige Vektoren zu
erweitern ist . . .

6. Zunächst sollten wir feststellen, ob g und h parallel zueinander liegen. Dies ist der Fall, wenn die
Richtungsvektoren kollinear sind. Diese Überprüfung führen wir wie unter 5.(a) beschrieben durch.

Nun unterscheiden wir:

Geraden parallel: Nun gilt es zwischen echter Parallelität und Identität zu unterscheiden. Im Falle von
Identität muss der Aufpunkt der einen Gerade auch auf der anderen Gerade liegen. Es müsste also
ein r geben, sodass ~Pg(r) = ~B ist, oder umgekehrt ein s, sodass ~Ph(s) = ~A ist. Der Parameter
r resp. s muss gleichzeitig die beiden Komponentengleichungen erfüllen!

Geraden schneiden sich: Wir überprüfen, ob g und h senkrecht zueinander stehen. Dies ist gemäss
Aufgabe 5.(b) genau dann der Fall, wenn das Skalarprodukt ihrer Richtungsvektoren verschwindet,
wenn also uxvx + uyvy = 0 ist. Ansonsten stehen g und g schief zueinander.

7. Ich starte mit der Gerade g und vergleiche sie einzeln mit den anderen Geraden:

Vergleich g und h: Kollinearität der Richtungsvektoren?
(

3

2

)

und
(

−3

1

)

können aufgrund der Vorzeichen in ihren Komponenten sicher nicht kollinear sein
⇒ g und h schneiden sich!

Für das Skalarprodukt der Richtungsvektoren erhalten wir: 3 ·(−3)+2 ·1 = −7 6= 0. Somit stehen
g und h schief zueinander!

Bestimmen wir noch den Schnittpunkt:

~Pg(r)
!
= ~Ph(s) ⇒

∣

∣

∣

∣

−2 + 3r = 0− 3s
−4 + 2r = 2 + s

∣

∣

∣

∣

⇔
∣

∣

∣

∣

3r + 3s = 2
2r − s = 6

∣

∣

∣

∣

⇔
∣

∣

∣

∣

3r + 3s = 2
6r − 3s = 18

∣

∣

∣

∣

⇒ 9r = 20 ⇔ r =
20

9
⇒ ~Sgh = ~Pg

(

20

9

)

=

(−2

−4

)

+
20

9
·
(

3

2

)

= . . . =

(

14/3

4/9

)

Bemerke: Wir brauchen lediglich einen der beiden Parameter bestimmen und dann diesen Wert
in die zugehörige PD einsetzen. Würden wir auch noch den anderen Parameter berechnen, so
ergäbe sich, eingesetzt in dessen zugehörige PD, genau derselbe Punkt – schliesslich handelt es
sich um den Schnittpunkt, also um den Punkt, der zu beiden Geraden gehört.
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Vergleich g und i: Kollinearität der Richtungsvektoren?

Gut sichtbar ist
(

−6

−4

)

= (−2) ·
(

3

2

)

⇒ g und i verlaufen parallel!

(Bereits jetzt merken wir uns: h und i sind nicht kollinear, weil g und h nicht kollinear sind, aber
g eben kollinear zu i ist.)

Wir überprüfen, ob der Aufpunkt von i auf g liegt:

~Pg(r)
?
= ~Ai ⇒

(−2

−4

)

+ r ·
(

3

2

)

=

(−1

0

)

⇔
∣

∣

∣

∣

−2 + 3r = −1
−4 + 2r = 0

∣

∣

∣

∣

⇔
∣

∣

∣

∣

r = 1

3

r = 2

∣

∣

∣

∣

Offensichtlich ergibt sich in den beiden Komponenten nicht derselbe Faktor k, sodass der Aufpunkt
von i nicht Teil der Gerade g sein kann. Folglich sind g und i echt parallel!

Vergleich g und j: Kollinearität der Richtungsvektoren? Also:
(

9/2
3

)

= k ·
(

3

2

)

?

Tatsächlich stimmt dies für k = 3

2
. Der Richtungsvektor von j ist das 1.5-fache des Richtungs-

vektors von g und somit sind diese Richtungsvektoren kollinear ⇒ g und j liegen parallel (und
somit ist j auch parallel zu i).

Ist der Aufpunkt von j ein Punkt auf g?

~Pg(r)
?
= ~Aj ⇒

(−2

−4

)

+ r ·
(

3

2

)

=

(

7

2

)

⇔
∣

∣

∣

∣

−2 + 3r = 7
−4 + 2r = 2

∣

∣

∣

∣

⇔
∣

∣

∣

∣

r = 3
r = 3

∣

∣

∣

∣

Tatsächlich liegt
(

7

2

)

auf g und somit sind g und j identisch! Wir brauchen für j also keine
Abklärungen mehr zu machen, wenn wir mit g durch sind.

Vergleich g und k: Kollinearität der Richtungsvektoren? Nein!
(

3

2

)

und
(

2

6

)

sind ganz offensichtlich
nicht kollinear (alle Komponenten positiv, aber im Richtungsvektor von g ist die x-Komponente
grösser als die y-Komponente und im Richtungsvektor von k ist das gerade umgekehrt) ⇒ g und
k schneiden sich!

Überprüfen der Orthogonalität mittels Skalaprodukt der Richtungsvektoren: 3 · 2+ 2 · 6 = 18 6= 0
⇒ g und k liegen schief zueinander.

Bleibt noch die Bestimmung des Schnittpunktes:

~Pg(r)
!
= ~Pk(v) ⇒

∣

∣

∣

∣

−2 + 3r = 4 + 2v
−4 + 2r = −2 + 6v

∣

∣

∣

∣

⇔
∣

∣

∣

∣

3r − 2v = 6
2r − 6v = 2

∣

∣

∣

∣

⇔
∣

∣

∣

∣

9r − 6v = 18
−2r + 6v = −2

∣

∣

∣

∣

⇒ 7r = 16 ⇔ r =
16

7
⇒ ~Sgk = ~Pg

(

16

7

)

=

(−2

−4

)

+
16

7
·
(

3

2

)

= . . . =

(

34/7

4/7

)

Vergleich h und i: Da i parallel zu g ist und g weder parallel, noch senkrecht zu h verläuft, müssen
auch h und i schief zueinander liegen!

Es bleibt nur noch den Schnittpunkt zu ermitteln:

~Ph(s)
!
= ~Pi(t) ⇒

∣

∣

∣

∣

0− 3s = −1− 6t
2 + s = 0− 4t

∣

∣

∣

∣

⇔
∣

∣

∣

∣

−3s+ 6t = −1
s+ 4t = −2

∣

∣

∣

∣

⇔
∣

∣

∣

∣

−3s+ 6t = −1
3s+ 12t = −6

∣

∣

∣

∣

⇒ 18t = −7 ⇔ t = − 7

18
⇒ ~Shi = ~Pi

(

− 7

18

)

=

(−1

0

)

− 7

18
·
(−6

−4

)

= . . . =

(

4/3

14/9

)

Vergleich h und j: Diesen Vergleich können wir überspringen, weil j identisch mit g ist. Somit liegen
auch h und j schief zueinander mit Schnittpunkt Shj = Sgh = (14

3
, 4
9
).
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Vergleich h und k: Kollinearität der Richtungsvektoren?

Die Vorzeichen der Komponenten der Richtungsvektoren sagen uns ohne weitere Rechnung bereits,
dass h und k nicht parallel verlaufen können und sich folglich schneiden müssen.

Wir überprüfen mittels Skalarprodukt, ob die beiden Richtungsvektoren orthogonal sind: (−3) ·
2 + 1 · 6 = −6 + 6 = 0. Ja, die beiden Richtungsvektoren und sind orthogonal und die somit
stehen h und k senkrecht zueinander.

Es bleibt nur noch den Schnittpunkt zu ermitteln:

~Ph(s)
!
= ~Pk(v) ⇒

∣

∣

∣

∣

0− 3s = 4 + 2v
2 + s = −2 + 6v

∣

∣

∣

∣

⇔
∣

∣

∣

∣

−3s− 2v = 4
s− 6v = −4

∣

∣

∣

∣

⇔
∣

∣

∣

∣

9s+ 6v = −12
s− 6v = −4

∣

∣

∣

∣

⇒ 10s = −16 ⇔ s = −8

5
⇒ ~Shk = ~Ph

(

−8

5

)

=

(

0

2

)

− 8

5
·
(−3

1

)

= . . . =

(

24/5

2/5

)

Vergleich i und j: Das haben wir schon erledigt, weil j identisch mit g ist. i und j sind folglich
ebenfalls echt parallel!

Vergleich i und k: Da i und g parallel sind und zudem g und k schief zueinander liegen, liegen auch
i und k schief zueinander!

Wiederum gilt es nur noch den Schnittpunkt zu bestimmen:

~Pi(t)
!
= ~Pk(v) ⇒

∣

∣

∣

∣

−1− 6t = 4 + 2v
0− 4t = −2 + 6v

∣

∣

∣

∣

⇔
∣

∣

∣

∣

−6t− 2v = 5
−4t− 6v = −2

∣

∣

∣

∣

⇔
∣

∣

∣

∣

18t+ 6v = −15
−4t− 6v = −2

∣

∣

∣

∣

⇒ 14t = −17 ⇔ t = −17

14
⇒ ~Sik = ~Pi

(

−17

14

)

=

(−1

0

)

− 17

14
·
(−6

−4

)

= . . . =

(

44/7

34/7

)

Vergleich j und k: Auch hier gibt es aufgrund der Identität von g und j nichts mehr zu tun. j und
k liegen schief zueinander und schneiden sich in Sjk = Sgk = (34

7
, 4
7
)!

Zum Schluss schauen wir uns noch die grafische Situation an. Alle fünf Schnittpunkte liegen “per
Zufall” im ersten Quadranten des Koordinatensystems und drei davon sehr nahe beieinander:
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