Übung F & R 4: Geometrische Reihen

Klasse 155c / AGe

1. Berechne die Summe $2+2\cdot\frac{1}{2}+2\cdot\frac{1}{4}+\ldots+\frac{1}{1024}$ mit der Doppelsummenmethode aus dem Unterricht.

2. Notiere die Summe mit dem Summenzeichen \sum und rechne sie anschliessend aus:

(a)
$$2+10+50+\ldots+31250$$

(b)
$$-2+10-50+\ldots-31250$$

(c)
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{4096}$$

(d)
$$\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \dots - \frac{1}{4096}$$

(e)
$$\frac{1}{27} - \frac{1}{9} + \frac{1}{3} - \dots - 81$$

(f)
$$\sqrt{3} + 3 + 3\sqrt{3} + \dots + 81$$

3. Berechne die Summe:

(a)
$$\sum_{i=1}^{11} (-4)^{i-1}$$

(b)
$$\sum_{k=1}^{8} 2 \cdot 3^k$$

(c)
$$\sum_{n=0}^{7} \left(\frac{2}{3}\right)^{n+2}$$

4. Gegeben sei eine GR mit $q=\frac{1}{3}$ und $a_4=18$. Für welches n ist $s_n=728$ und wie lautet bei dieser Teilsumme das letzte Glied?

5. Wie viele Glieder der GF 15, 16, etc. müssen mindestens addiert werden, damit die Partialsumme grösser als eine Milliarde ist?

6. Definiere die Folge 3, 33, 333, 3333, ... sowohl explizit als auch rekursiv.

7. Bestimme a_3 , a_4 , a_5 , a_6 aus $a_1 = 1$, $a_2 = m$ und der Rekursionsformel $a_{k+2} = 2a_{k+1} - a_k$. Um welche Art von Folge handelt es sich bei (a_k) ? Gib eine explizite Formel für das allgemeine Glied a_k in Abhängigkeit des Parameters m an, $k \in \mathbb{N}$.

8. Berechne aus den gegebenen Informationen einer GF die gesuchten Grössen.

(a) geg.:
$$a_4 = 27$$
, $q = 0.3$, ges.: a_1 , s_2

(a) geg.:
$$a_4=27,\ q=0.3,\ \text{ges.:}\ a_1,\ s_9$$
 (b) geg.: $a_1=\frac{1}{5},\ q=2,\ s_i=26\,214.2,\ \text{ges.:}\ \text{Index}\ i$

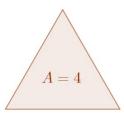
(c) geg.:
$$a_1 = \frac{\sqrt{6}}{40}$$
, $q = \sqrt{2}$, ges.: a_{10} , s_{10} (d) geg.: $a_1 = \frac{1}{6}$, $q = 1 - \sqrt{3}$, ges.: a_6 , s_6

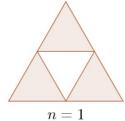
(d) geg.:
$$a_1 = \frac{1}{6}$$
, $q = 1 - \sqrt{3}$, ges.: a_6 , s_6

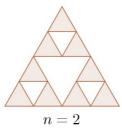
9. Gegeben sei die geometrische Teilsumme $s_n=3+6+12+\ldots+x$. Welches ist der kleinst mögliche Wert für x, wenn $s_n > 100\,000$ sein soll?

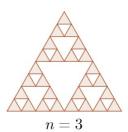
10. Eine GF besteht aus 10 positiven Gliedern; sie beginnt bei 1 und endet bei 2. Berechne s_{10} .

11. Das Sierpinski-Dreieck. Die folgenden Figuren zeigen die ersten vier Glieder eines bekannten Fraktals, das nach dem polnischen Mathematiker Waclaw Franciszek Sierpinski (1882-1969) benannt ist:









Die Folge (a_n) beschreibe die Summe der Flächeninhalte der weissen Flächen innerhalb des grossen Dreiecks.

(a) Bestimme a_1 bis a_4 und gib eine explizite Formel für die Fläche a_n an.

(b) Welcher Fläche nähert sich a_n für $n \to \infty$ an?

(c) Ab welchem Index n ist $a_n > 3.99$?

(d) Wie viele braune Dreiecke hat das *n*-te Sierpinski-Dreieck?