Ubungen zur Differentialrechnung — Lésungen Serie IX

1. Kurvendiskussion einiger zusammengesetzter Funktionen

a(z) = e~*": Alle z € R kénnen problemlos in a(z) eingesetzt werden. Wegen dem z2 ist die Funktion,
ihr Graph also symmetrisch zur y-Achse. Es gibt keine Nullstellen, denn die Exponentialfunktion
e¥ kann nicht den Wert 0 annehmen. Fiir x — +o00 strebt die Funktion gegen 0, ihr Graph also
gegen die xz-Achse.

2

dx)=e"  (-2z)=—2x- e = HS: z=0 mit a(0) =

1

1 1
d'N(x)=—2-e % — 9. . (—2z) = —4e™ %" (m—l——) <:U——>
@ (~20) v .

-~ WS: m:ii:i@zio.n mit a<i1>:e%:izo.61
a2

- o)

Wir skizzieren den Graphen aufgrund dieser Informationen:

= H(0,1)

Y

H

b(x) =x - e *: Wieder lassen sich alle x € R einsetzen. Es gibt genau eine NS bei x = 0, weil
e~ " niemals gleich 0 sein kann. Fiir z — +o0o geht die Funktion gegen 0, denn die abfallende
Exponentialfunktion e™® dominiert liber die ansteigende lineare Funktion x. Somit wird sich der
Graph im positiv Unendlichen an die x-Achse anschmiegen. Anders fiir  — —oo. Hier strebt x
gegen —oo und e~ ® gegen +o0o. Das Produkt geht folglich gegen —oo.

Vi@)=1-e"+x-e % (=1)=e (1 —x)
1

1
= HS: z=1 mit b(l)=e'=-=037 = H <0, —)
e e

Viig)=e @ (=1)-(1—z)+e® - (=1)=e"(x—2)
S WS r=2 mit b2)=2 = 2~027 = W (2, %)
e e

Nun skizzieren wir den Graphen:

Y
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c(x) = 2122: Der Logarithmus ist nur fiir positive Zahlen z € R* definiert. Die einzige Nullstelle
finden wir bei = 1, denn dort nimmt der Zahler den Wert 0 an (In1 = 0). Zudem hat die
Funktion aufgrund des Nenners = bei z = 0 eine Polstelle. Der Graph muss rechts davon also aus
dem positiv oder dem negativ Unendlichen ins Bild kommen. Fiir z — oo verstehen wir, dass die
Nennerfunktion x starker anwichst als die Zadhlerfunktion In x. Somit wird sich der Graph nicht
extrem schnell, aber schliesslich doch der x-Achse anschmiegen.

1

~.xz—Inx-1 1—Inx
/ —92.Z —=9.
¢ (z) 72 22
21 2 2
= HS: lnz=1 & z=e mit cle) = 2o o H(e,—)
e e e
1,2
c”(x):Q-_g‘x —(14—1n$)‘2x:2.—33—2:6:1#23:1113::2.21113:3—3
x x x
= WS: 2lhz=3 < x:e%:(\/é)gw4.48

mit ¢ 63 :2-ln( 6)3: 3 ~ 0. = 63 3
(Vo) == ~ e = W(“’ ’(ﬁ)3>

Fiir den Graphen ergibt sich folglich:

Y

d(x) = w%%: Zahler und Nenner weisen keine Nullstellen auf. Es gibt somit keine Null- oder Polstellen
und alle z € R sind einsetzbar. Die Funktion ist wegen dem 2 gerade, ihr Graph also symmetrisch
zur y-Achse. Fiir x — 400 wachst der Nenner ins Unendlich an, sodass die ganze Funktion gegen

0 strebt. Der Graph wird sich fiir £ — 400 an die x-Achse anschmiegen.

, -1 -8z . 4 4
d(x):4-7($2+3)2-2m:7(x2+3)2 = HS: z=0 mit d(O):g = H<O,§>
v 1-(x2+3)2—z-22?+3)- 20 —3(z? 1) (x+1)(z—1)
o) =-8. @ +3)" B CE N =
4

= WS: z=+41 mit d(1) 1 = Wiy =(+1,1)

Somit haben wir alles beisammen um den Graphen zu skizzieren:

Y
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e()

= %: Da der Zahler e* keine Nullstellen hat, hat auch diese Funktion als ganzes keine. Dafiir
gibt es eine ungerade Polstelle bei x = 0. D.h., wir kdnnen alle  ausser x = 0 in die Funktion
einsetzen. Im Unendlichen wird die Exponentialfunktion im Zahler iiber die lineare Funktion im
Nenner dominieren. Fiir + — +o0o wird die Funktion ins Unendliche ansteigen. Fiir x — —o0
strebt die Funktion umgekehrt gegen 0 und der Graph schmiegt sich an die z-Achse an.

efx—e’ 1 ef(x—1)

/ . — 1 — ~
e(x) = p = = HS: z=1 mit e(l)=ex272 = T(l,e)

) (e“(x—1)+e"-1)-a?—e"(x—1)-2z " 2% e 222+ 2
e'(x) = =

x4 x4
e (2% — 21 + 2)

= . =  keine WS, weil: D =b>—4ac=(-2)>-4-1-2<0
T

Aufgrund der Polstelle hat der Graph zwei Aste. Dieser Umstand erlaubt, dass es keine Wendestelle
gibt, obwohl der Graph links von 0 eine Rechtskurve und rechts von 0 eine Linkskurve beschreibt:

Yy
3 G-

T

o
]
w
£
v
(=2}

= xfil: Es gibt eine Nullstelle bei x = 0, weil dort der Zahler gleich 0 ist. Der Nenner ist stets

positiv. Alle z € R lassen sich einsetzen. Fiir x — 00 schmiegt sich der Graph an die x-Achse,
weil die quadratische Funktion im Nenner iiber die lineare Funktion im Zahler dominiert. Da der
Nenner stets positiv ist, definiert der Zahler das Vorzeichen des Funktionswertes. Rechts von
= 0 hat die Funktion positive Werte, links davon hingegen negative. Insgesamt ist die Funktion
ungerade, der Graph also punksymmetrisch zum Ursprung, weil die Zdhlerfunktion 2x ungerade

und die Nennerfunktion 22 + 1 gerade ist (“ungerade” : “gerade” = “ungerade”).
f,(x):2‘1-(x2+1)—x-2x:2‘ 1—2? :2‘(1+x)(1—x)
(z2 +1)2 (22 +1)2 (22 +1)2

= HS: z==41 mit f(F1)=+1 = T(-1,-1) und H(1,1)
Pl =2, 22 @D (20 2e? 4 1) 20, dn(a? + 1) - el - )

(1.2 4 1)4 - (xZ 4 1)3
Ja(a+ V3)(@ — V3)

(% +1)3

=4 WS: z=0,+V3~+1.73 mit f(0)=0

und f(i\/g):igzio.w = Wi(0,0) und Wy <i\/§,i§>
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g(x)=+e-x- e*%: Die Exponentialfunktion e~%*/2 liefert keine Nullstelle. Es gibt nur die eine Null-
stelle x = 0. Der Definitionsbereich ist ganz R. Im Unendlichen dominiert wieder die abfallende
Exponentialfunktion und der Graph schmiegt sich an die z-Achse an. Der Graph ist punktsymme-
tris%h zum Ursprung, denn wir multiplizieren die ungerade Funktion x mit der geraden Funktion
e /2,

2 2 22 22

J(z) = \/E<1-e_% +x-e_%(—x)> =ve-e T (l-a?)=\e e T(l-x)(1l+a)

—+1 = T(-1,-1) und H(1,1)

SIS

= HS: z=+1 mit g(£l)=+Ve e~

T T 2

g (x)=+/e- <e_72(—x) S(1-2) + 6_72 : (—2m)> Ve-e T (2 — 3x)
= e-eiéaz(:ﬂ%—ﬁ)(m—\/g)
= WS: z=0+V/3~+173 mit g(0)=0 = W;i(0,0)

und g(£V3)==e- V3.e s = i? ~ 1064 = W (i\/ﬁ,i?)

Es ergibt sich ein dhnlicher Graph wie bei f(x). Dieser hier geht allerdings aufgrund der quadratisch
abfallenden Exponentialfunktion e~*/2 schneller gegen die z-Achse:

Y

h(z) = =+ Der Logarithmus im Nenner ist nur fiir z > 0 definiert. Ausserdem ist In1=0. z =1 ist
also eine Polstelle und die Funktion existiert nur auf R™ \ {1}. Im Intervall ]0; 1] ist die Funktion
negativ, weil Inx hier negativ und der Zahler = positiv ist. Rechts von x = 1 ist die Funktion

positiv und fiir x — 400 geht sie ins positiv Unendliche, weil x schneller anwachst als In z.

h,(x)zl-lnx—x-% _lnx—l

(Inz)? ~ (Inx)2
= HS: lnz=1 = z=e mit h(e):li:er%Z.?Q = Tle,e)
ne
W () = %-(lnx)z— (1nx—1)-21nx-% _Inz—-2(nz—-1) 2-Inz

(Inz)4 B z(Inz)3 ~ z(lnz)3

2 2

= WS: Inz=2 = z=¢€ mit h(eQ) = % ~369 = W <€2,%>
Der Graph wird auf der nichsten Seite oben gezeigt. Die Grenzbereiche vorauszusagen ist heikel.
Grundsatzlich muss man wissen, dass x iiber In z dominiert. Das gilt sowohl fiir z — 0, wie auch
fir £ — 0o. So kommt es, dass der Graph links in Richtung Ursprung lduft und nicht etwa aus
dem negativ Unendlichen ins Bild tritt. Und rechts verstehen wir das sehr gemachliche, aber eben
doch vorhandene “ins Unendliche gehen": Rechts von W haben wir eine stindige Rechtskurve,
die aber so schwach wird, dass der Graph dennoch jede beliebige y-Hohe erreicht.
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oy o

i(z) = % + v/x: Aufgrund der Wurzel sind nur positive Werte € R™. Der Randwert z = 0 kommt
aufgrund von % ebenfalls nicht in Frage. Fiir x — 0 wird der Funktionsgraph ins positiv Unendli-
che verschwinden. Fiir x — 400 gilt dies ebenso, denn zwar geht ﬁ gegen 0, aber hinzu addierte
die Wurzel wéchst trotzdem ohne Beschrankung weiter an.

1 1 -1
202 2\/x 212
L 1 3 3
= HS: zyz=1 & zx=1 mit 1(1):§+1:§ = T 1,5
2 1 d-a2yz 2
-1/ _ & _ . _ — 43 939~ .
() = 55 NG 13 = WS 2yz=4 = 2=45=2V2~252

+/2V2x 179 = W ~(2.52,1.79)

mit 2(2%) - 4\1/5

Nun kdnnen wir skizzieren:

2. Zuniachst faktorisieren wir:
2?2 -9 (x+3)(z —3)

f) = 223 + 422 222(x + 2)

Somit gibt es zwei einfache Nullstellen bei z = 43, eine doppelte Polstelle bei = 0 und eine einfache
Polstelle bei z = —2. Das Nennerpolynom hat den hoheren Grad als das Zdhlerpolynom. Damit schmiegt
sich der Graph fiir x — 400 an die z-Achse. Fiir x = —4 erhalten wir — am einfachsten sichtbar durch
Einsetzen in die faktorisierte Form — einen positiven Zahler und einen negativen Nenner, also insgesamt
einen negativen Funktionswert. Somit muss der Graph bei der Nullstelle z = —3 vom Negativen ins
Positive wechseln und bei der Polstelle x = —2 ins positiv Unendliche verschwinden. Danach taucht er
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aus dem negativ Unendlichen wieder auf (ungerade Polstelle) und verschwindet bei x = 0 auch wieder
ins negativ Unendliche, denn zwischen z = —2 und x = 0 gibt es ja keine Nullstellen. Rechts von
x = 0 erscheint der Graph wieder aus dem negativ Unendlichen (gerade Polstelle), durchquert dann
die z-Achse bei der zweiten Nullstelle x = 3 und legt sich dann von oben her an die z-Achse:

3. Zunichst gilt es die Tangente ¢ an den Gy im Punkt B in Abhangigkeit von x¢ zu bestimmen. Wir
leiten ab und ermitteln die Steigung m; der Tangente t:

f@y=e* = fll@)=e"(-1)=—" = my=f(v)=—€e"

Der Punkt B sitzt auf dem G hat folglich die Koordinaten B(xq,e™*°). Damit kénnen wir fiir die
Tangente t schreiben:

t(z) =my(x —xp)+yp = —e *° (:U — xo) +e 70
Die Tangente t schneidet die z-Achse an der Stelle ;. D.h., t(x1) = 0. Daraus folgern wir:

t(zy) = —e (21 — x0) + € 20 & e =g (21— o)

Wir teilen durch e=*9 und erhalten: Az = 21 — 2o = 1. Die Stelle z1 ist also immer um Az = 1 weiter
rechts auf der z-Achse als x, egal wie xg gewdhlt wird. q.e.d.

4. Zuerst leiten wir zweimal ab:

2
x 1 , z 1 " 1 2
fo=%-- = f@=T+5 = f@=7-5
Fiir Stellen mit Rechtskrimmung muss gelten: f”(x) < 0. Daraus folgern wir (unter der Voraussetzung):
1 2 % 0 < L < & 1< 8
4 23 4 " 23 a3

Wir unterscheiden:

e Fiir alle negativen z ist dies sicher falsch, denn dann ist 2% < 0 und somit auch % <0<l
e 1 = () geht sowieso nicht, weil es sich dabei um eine Polstelle der Funktion handelt.

Es kommen somit also ausschliesslich positive Zahlen in Frage! Ausgehend von dieser Feststellung
kénnen wir nun weiterrechnen:
8
1< @ P<8 & z<2
x
Damit haben wir die Lésung gefunden: Fiir alle x €]0; 2[ ist der Graph von f(x) rechtsgekrimmt. Oben
auf der nichsten Seiten habe ich ihn zur Verdeutlichung abgebildet.
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. G linksgekriimmt
\ - f—2

G linksgekriimmit

032 :
4 3 2 1 0 ;”, T 7 :
-1
(7 ¢ rechtsgekriimmt
-2
5. Als Erstes leiten wir ab und ermitteln die Tangentensteigung m:

1 / 3 , 3
f(x) 3 [(z) o f'(zp) Y

Fiir die Steigungen zweier zueinander senkrecht stehender Geraden gilt stets
m-m) = —1

und somit folgt fiir die Steigung von ¢ :

Mit den Koordinaten von P, also mit P(zp, 9%3) notieren wir fiir die Gleichung der Senkrechten ¢ :
P

4

x 1
ti(z)=my(z—2p)+yp= ?P(l“ —xp)+ —
Tp

Soll ¢, durch den Ursprung verlaufen, so muss ¢ (0) = 0 sein. Daraus schliessen wir auf xp:

t O—§O— LLO ﬁ_i 8 —3 =43
l()_3( xP)+x3_ < 3T T = =~ Ip =TV
P P -

Bemerke: Der GG; hat auch einen negativen Ast, der in der Grafik in der Aufgabenstellung nicht zu
sehen ist. Der Punkt P kann aber ebenso gut dort drauf liegen. Wegen der Punktsymmetrie des G
liegen die beiden Losungen symmetrisch zum Ursprung.

6. In der Grafik entdecken wir:

e Doppelte Nullstelle bei x = —2, einfache Nullstelle bei z = 1.
e Gerade Polstelle bei z = —1, ungerade Polstelle bei x = 2.

e Horizontale Asymptote auf der Hohe y = —2.
Diese drei Aspekte lassen sich in einem Bruch vereinen:

—2(z +2)%(x — 1)
(z +1)*(x —2)

flz) =
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7. Damit das Volumen der Rinne maximal wird, muss die Querschnittsfliche A moglichst gross sein. Diese
Trapezflache dient uns also als Zielfunktion. Wir notieren (Trapezformel A = “T*C -h mit a = 20 und
¢ =20+ 2u):

20+ (20 + 2u)

2

Im rechtwinkligen Dreieck folgt mit dem Satz des Pythagoras:

A(u, h) -h=(20+u)-h
RP =202 —u? = h=+20%—u?
Damit schreiben wir die Zielfunktion, resp. ihr Quadrat neu:
Alu) = (20 +u) - /202 —u2  resp. Q(u) = A%(u) = (20 + u)?(20° — u?) = (20 + ©)3(20 — w)
Nun optimieren wir, indem wir die Ableitung gleich 0 setzen:

Q'(u) = 3(20 + u)*(20 — u) — (20 + u)® = (20 + u)*(3(20 — u) — (20 + w))
= (20+u2)(0—du) =0 = wu=10

Somit folgt fiir die Breite oben: ¢ =20 4+ 2u =20+ 20 = 40cm .

8. Die Zielfunktion ist die Oberfliche ohne Deckel — A. Sie soll minimal werden! Wir notieren dafiir:
A(r,h) = G+ M = 7r? + 27rh
Als Nebenbedingung fordert die Aufgabenstellung das konstante Volumen 1, also:
V=Gh=m’h =1 = h=—

Damit wird die Oberflache zu:

2 2
A(r) = nr? + 2zrh(r) = 72 + _77;’ =4 =
mr r
Jetzt leiten wir diese Zielfunktion nach r ab:
2 2 1 1
A'(T):QWT——2;0 = 2mr=—5 = P== = r=—=
r r T V&S

Zum Schluss finden wir fiir das optimale Verhiltnis aus Héhe und Radius:

1 1 1 1
h= " = = =—=r = h:ir=1:1
Tr2 77-\3/% \3/713.3%/;2 \3/7_1' —_—

Es handelt sich eher um eine flache Dose, deren Durchmesser d = 2r doppelt so gross ist wie die Hohe.
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9. (a) Es handelt sich um eine um vier Einheiten nach links verschobene Wurzelfunktion:

Ey y
2.4
Plxp,yp '
(zp,yp) b iip
- 1
h A
A &
I o 5
-4 -3 Tp -2 -1 0 (U U)

(b) Die Rechtecksfliache ist unsere Zielfunktion:
A(b,h) =b-h

Die Breite b des Rechtecks entspricht dem Betrag der z-Koordinate des Punktes P. Da xp negativ
sein soll, kénnen wir schreiben: b = |zp| = —xp.

Die Hohe h des Rechtecks entspricht dem Betrag der y-Koordinate von P. Im 2. Quadranten ist
yp ein positiver Wert, sodass folgt: h = |yp| = yp = f(zp) = Vap + 4.

Damit lautet die Zielfunktion in Abhingigkeit von zp:

A(zp) = b(zp) - h(zp) = —xp-Vap +4
Um die Ableitung der Wurzel zu vermeiden, betrachten wir davon das Quadrat:
Q(zp) = A%(zp) = ab(xp +4) = 2} + daP
Nun leiten wir ab und bestimmen die Maximalstelle(n):

8
Q’(xp):3m%+8xp:xp(3xp+8)éO = xp=0 oder .%'P:—g

. . ’ . . e . . 8 . _ 8
Nur die negative Losung liegt im Attraktivitatsintervall: —5 € | —4;0[ = zp = —3.

N.B.: Die maximale Flache betragt:

A(_8)_8 /8, , 8 [8+12 8 /4 8.2 16V3
3/ 3V 3 3 3 3V3 33 9
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