
Übungen zur Differentialrechnung – Lösungen Serie IX

1. Kurvendiskussion einiger zusammengesetzter Funktionen

a(x) = e−x2

: Alle x ∈ R können problemlos in a(x) eingesetzt werden. Wegen dem x2 ist die Funktion,
ihr Graph also symmetrisch zur y-Achse. Es gibt keine Nullstellen, denn die Exponentialfunktion
ey kann nicht den Wert 0 annehmen. Für x → ±∞ strebt die Funktion gegen 0, ihr Graph also
gegen die x-Achse.

a′(x) = e−x2 · (−2x) = −2x · e−x2 ⇒ HS: x = 0 mit a(0) = 1 ⇒ H(0, 1)

a′′(x) = −2 · e−x2 − 2x · e−x2 · (−2x) = −4e−x2

(

x+
1√
2

)(

x− 1√
2

)

⇒ WS: x = ± 1√
2
= ±

√
2

2
≈ ±0.71 mit a

(

± 1√
2

)

= e−
1

2 =
1√
e
≈ 0.61

⇒ W1/2

(

± 1√
2
,
1√
e

)

Wir skizzieren den Graphen aufgrund dieser Informationen:

b(x) = x · e−x: Wieder lassen sich alle x ∈ R einsetzen. Es gibt genau eine NS bei x = 0, weil
e−x niemals gleich 0 sein kann. Für x → +∞ geht die Funktion gegen 0, denn die abfallende
Exponentialfunktion e−x dominiert über die ansteigende lineare Funktion x. Somit wird sich der
Graph im positiv Unendlichen an die x-Achse anschmiegen. Anders für x → −∞. Hier strebt x
gegen −∞ und e−x gegen +∞. Das Produkt geht folglich gegen −∞.

b′(x) = 1 · e−x + x · e−x · (−1) = e−x(1− x)

⇒ HS: x = 1 mit b(1) = e−1 =
1

e
≈ 0.37 ⇒ H

(

0,
1

e

)

b′′(x) = e−x · (−1) · (1− x) + e−x · (−1) = e−x(x− 2)

⇒ WS: x = 2 mit b(2) = 2e−2 =
2

e2
≈ 0.27 ⇒ W

(

2,
2

e2

)

Nun skizzieren wir den Graphen:
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c(x) = 2 lnx
x : Der Logarithmus ist nur für positive Zahlen x ∈ R

+ definiert. Die einzige Nullstelle
finden wir bei x = 1, denn dort nimmt der Zähler den Wert 0 an (ln 1 = 0). Zudem hat die
Funktion aufgrund des Nenners x bei x = 0 eine Polstelle. Der Graph muss rechts davon also aus
dem positiv oder dem negativ Unendlichen ins Bild kommen. Für x → ∞ verstehen wir, dass die
Nennerfunktion x stärker anwächst als die Zählerfunktion lnx. Somit wird sich der Graph nicht
extrem schnell, aber schliesslich doch der x-Achse anschmiegen.

c′(x) = 2 ·
1

x · x− lnx · 1
x2

= 2 · 1− lnx

x2

⇒ HS: lnx = 1 ⇔ x = e mit c(e) =
2 ln e

e
=

2

e
⇒ H

(

e,
2

e

)

c′′(x) = 2 · −
1
x · x2 − (1− lnx) · 2x

x4
= 2 · −x− 2x+ 2x lnx

x4
= 2 · 2 lnx− 3

x3

⇒ WS: 2 ln x = 3 ⇔ x = e
3

2 =
(√

e
)3 ≈ 4.48

mit c
(

(√
e
)3
)

=
2 · ln

(√
e
)3

(√
e
)3

=
3

(√
e
)3

≈ 0.67 ⇒ W

(

(√
e
)3
,

3
(√

e
)3

)

Für den Graphen ergibt sich folglich:

d(x) = 4

x2+3
: Zähler und Nenner weisen keine Nullstellen auf. Es gibt somit keine Null- oder Polstellen

und alle x ∈ R sind einsetzbar. Die Funktion ist wegen dem x2 gerade, ihr Graph also symmetrisch
zur y-Achse. Für x → ±∞ wächst der Nenner ins Unendlich an, sodass die ganze Funktion gegen
0 strebt. Der Graph wird sich für x → ±∞ an die x-Achse anschmiegen.

d′(x) = 4 · −1

(x2 + 3)2
· 2x =

−8x

(x2 + 3)2
⇒ HS: x = 0 mit d(0) =

4

3
⇒ H

(

0,
4

3

)

d′′(x) = −8 · 1 · (x
2 + 3)2 − x · 2(x2 + 3) · 2x

(x2 + 3)4
= −8 · −3(x2 − 1)

(x2 + 3)3
= 24 · (x+ 1)(x− 1)

(x2 + 3)3

⇒ WS: x = ±1 mit d(1) =
4

12 + 3
= 1 ⇒ W1/2 = (±1, 1)

Somit haben wir alles beisammen um den Graphen zu skizzieren:
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e(x) = ex

x : Da der Zähler ex keine Nullstellen hat, hat auch diese Funktion als ganzes keine. Dafür
gibt es eine ungerade Polstelle bei x = 0. D.h., wir können alle x ausser x = 0 in die Funktion
einsetzen. Im Unendlichen wird die Exponentialfunktion im Zähler über die lineare Funktion im
Nenner dominieren. Für x → +∞ wird die Funktion ins Unendliche ansteigen. Für x → −∞
strebt die Funktion umgekehrt gegen 0 und der Graph schmiegt sich an die x-Achse an.

e′(x) =
ex · x− ex · 1

x2
=

ex(x− 1)

x2
⇒ HS: x = 1 mit e(1) = e ≈ 2.72 ⇒ T (1, e)

e′′(x) =

(

ex(x− 1) + ex · 1
)

· x2 − ex(x− 1) · 2x
x4

=
ex · x3 − ex · 2x2 + ex · 2x

x4

=
ex(x2 − 2x+ 2)

x3
⇒ keine WS, weil: D = b2 − 4ac = (−2)2 − 4 · 1 · 2 < 0

Aufgrund der Polstelle hat der Graph zwei Äste. Dieser Umstand erlaubt, dass es keine Wendestelle
gibt, obwohl der Graph links von 0 eine Rechtskurve und rechts von 0 eine Linkskurve beschreibt:

f(x) = 2x
x2+1

: Es gibt eine Nullstelle bei x = 0, weil dort der Zähler gleich 0 ist. Der Nenner ist stets
positiv. Alle x ∈ R lassen sich einsetzen. Für x → ±∞ schmiegt sich der Graph an die x-Achse,
weil die quadratische Funktion im Nenner über die lineare Funktion im Zähler dominiert. Da der
Nenner stets positiv ist, definiert der Zähler das Vorzeichen des Funktionswertes. Rechts von
x = 0 hat die Funktion positive Werte, links davon hingegen negative. Insgesamt ist die Funktion
ungerade, der Graph also punksymmetrisch zum Ursprung, weil die Zählerfunktion 2x ungerade
und die Nennerfunktion x2 + 1 gerade ist (“ungerade” : “gerade” = “ungerade”).

f ′(x) = 2 · 1 · (x
2 + 1)− x · 2x
(x2 + 1)2

= 2 · 1− x2

(x2 + 1)2
= 2 · (1 + x)(1− x)

(x2 + 1)2

⇒ HS: x = ±1 mit f(±1) = ±1 ⇒ T (−1,−1) und H(1, 1)

f ′′(x) = 2 · −2x · (x2 + 1)2 − (1− x2) · 2(x2 + 1) · 2x
(x2 + 1)4

= 2 · −2x(x2 + 1)− 4x(1− x2)

(x2 + 1)3

= 4 · x(x+
√
3 )(x−

√
3 )

(x2 + 1)3
⇒ WS: x = 0,±

√
3 ≈ ±1.73 mit f(0) = 0

und f
(

±
√
3
)

= ±
√
3

2
≈ ±0.87 ⇒ W1(0, 0) und W2/3

(

±
√
3,±

√
3

2

)
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g(x) =
√
e · x · e−x

2

2 : Die Exponentialfunktion e−x2/2 liefert keine Nullstelle. Es gibt nur die eine Null-
stelle x = 0. Der Definitionsbereich ist ganz R. Im Unendlichen dominiert wieder die abfallende
Exponentialfunktion und der Graph schmiegt sich an die x-Achse an. Der Graph ist punktsymme-
trisch zum Ursprung, denn wir multiplizieren die ungerade Funktion x mit der geraden Funktion
e−x2/2.

g′(x) =
√
e

(

1 · e−x
2

2 + x · e−x
2

2 (−x)

)

=
√
e · e−x

2

2

(

1− x2
)

=
√
e · e−x

2

2 (1− x)(1 + x)

⇒ HS: x = ±1 mit g(±1) = ±
√
e · e− 1

2 = ±1 ⇒ T (−1,−1) und H (1, 1)

g′′(x) =
√
e ·
(

e−
x
2

2 (−x) ·
(

1− x2
)

+ e−
x
2

2 · (−2x)

)

=
√
e · e−x

2

2

(

x3 − 3x
)

=
√
e · e−x

2

2 x
(

x+
√
3
)(

x−
√
3
)

⇒ WS: x = 0,±
√
3 ≈ ±1.73 mit g(0) = 0 ⇒ W1(0, 0)

und g
(

±
√
3
)

= ±
√
e ·

√
3 · e− 3

2 = ±
√
3

e
≈ ±0.64 ⇒ W2/3

(

±
√
3,±

√
3

e

)

Es ergibt sich ein ähnlicher Graph wie bei f(x). Dieser hier geht allerdings aufgrund der quadratisch
abfallenden Exponentialfunktion e−x2/2 schneller gegen die x-Achse:

h(x) = x
lnx : Der Logarithmus im Nenner ist nur für x > 0 definiert. Ausserdem ist ln 1 = 0. x = 1 ist

also eine Polstelle und die Funktion existiert nur auf R+ \ {1}. Im Intervall ]0; 1[ ist die Funktion
negativ, weil lnx hier negativ und der Zähler x positiv ist. Rechts von x = 1 ist die Funktion
positiv und für x → +∞ geht sie ins positiv Unendliche, weil x schneller anwächst als lnx.

h′(x) =
1 · lnx− x · 1

x

(lnx)2
=

lnx− 1

(lnx)2

⇒ HS: lnx = 1 ⇒ x = e mit h(e) =
e

ln e
= e ≈ 2.72 ⇒ T (e, e)

h′′(x) =
1
x · (lnx)2 − (lnx− 1) · 2 lnx · 1

x

(lnx)4
=

lnx− 2(lnx− 1)

x(lnx)3
=

2− lnx

x(ln x)3

⇒ WS: lnx = 2 ⇒ x = e2 mit h
(

e2
)

=
e2

2
≈ 3.69 ⇒ W

(

e2,
e2

2

)

Der Graph wird auf der nächsten Seite oben gezeigt. Die Grenzbereiche vorauszusagen ist heikel.
Grundsätzlich muss man wissen, dass x über lnx dominiert. Das gilt sowohl für x → 0, wie auch
für x → ∞. So kommt es, dass der Graph links in Richtung Ursprung läuft und nicht etwa aus
dem negativ Unendlichen ins Bild tritt. Und rechts verstehen wir das sehr gemächliche, aber eben
doch vorhandene “ins Unendliche gehen”: Rechts von W haben wir eine ständige Rechtskurve,
die aber so schwach wird, dass der Graph dennoch jede beliebige y-Höhe erreicht.
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i(x) = 1
2x +

√
x: Aufgrund der Wurzel sind nur positive Werte x ∈ R

+. Der Randwert x = 0 kommt
aufgrund von 1

2x ebenfalls nicht in Frage. Für x → 0 wird der Funktionsgraph ins positiv Unendli-
che verschwinden. Für x → +∞ gilt dies ebenso, denn zwar geht 1

2x gegen 0, aber hinzu addierte
die Wurzel wächst trotzdem ohne Beschränkung weiter an.

i′(x) = − 1

2x2
+

1

2
√
x
=

−1 + x
√
x

2x2

⇒ HS: x
√
x = 1 ⇔ x = 1 mit i(1) =

1

2
+ 1 =

3

2
⇒ T

(

1,
3

2

)

i′′(x) =
2

2x3
− 1

4x
√
x
=

4− x
√
x

4x3
⇒ WS: x

√
x = 4 ⇒ x = 4

2

3 = 2
3
√
2 ≈ 2.52

mit i
(

2
3
√
2
)

=
1

4 3
√
2
+

√

2
3
√
2 ≈ 1.79 ⇒ W ≈ (2.52, 1.79)

Nun können wir skizzieren:

2. Zunächst faktorisieren wir:

f(x) =
x2 − 9

2x3 + 4x2
=

(x+ 3)(x − 3)

2x2(x+ 2)

Somit gibt es zwei einfache Nullstellen bei x = ±3, eine doppelte Polstelle bei x = 0 und eine einfache
Polstelle bei x = −2. Das Nennerpolynom hat den höheren Grad als das Zählerpolynom. Damit schmiegt
sich der Graph für x → ±∞ an die x-Achse. Für x = −4 erhalten wir – am einfachsten sichtbar durch
Einsetzen in die faktorisierte Form – einen positiven Zähler und einen negativen Nenner, also insgesamt
einen negativen Funktionswert. Somit muss der Graph bei der Nullstelle x = −3 vom Negativen ins
Positive wechseln und bei der Polstelle x = −2 ins positiv Unendliche verschwinden. Danach taucht er
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aus dem negativ Unendlichen wieder auf (ungerade Polstelle) und verschwindet bei x = 0 auch wieder
ins negativ Unendliche, denn zwischen x = −2 und x = 0 gibt es ja keine Nullstellen. Rechts von
x = 0 erscheint der Graph wieder aus dem negativ Unendlichen (gerade Polstelle), durchquert dann
die x-Achse bei der zweiten Nullstelle x = 3 und legt sich dann von oben her an die x-Achse:

3. Zunächst gilt es die Tangente t an den Gf im Punkt B in Abhängigkeit von x0 zu bestimmen. Wir
leiten ab und ermitteln die Steigung mt der Tangente t:

f(x) = e−x ⇒ f ′(x) = e−x · (−1) = −e−x ⇒ mt = f ′(x0) = −e−x0

Der Punkt B sitzt auf dem Gf hat folglich die Koordinaten B(x0, e
−x0). Damit können wir für die

Tangente t schreiben:

t(x) = mt(x− xB) + yB = −e−x0

(

x− x0
)

+ e−x0

Die Tangente t schneidet die x-Achse an der Stelle x1. D.h., t(x1) = 0. Daraus folgern wir:

t(x1) = −e−x0

(

x1 − x0
)

+ e−x0
!
= 0 ⇔ e−x0 = e−x0

(

x1 − x0
)

Wir teilen durch e−x0 und erhalten: ∆x = x1−x0 = 1. Die Stelle x1 ist also immer um ∆x = 1 weiter
rechts auf der x-Achse als x0, egal wie x0 gewählt wird. q.e.d.

4. Zuerst leiten wir zweimal ab:

f(x) =
x2

8
− 1

x
⇒ f ′(x) =

x

4
+

1

x2
⇒ f ′′(x) =

1

4
− 2

x3

Für Stellen mit Rechtskrümmung muss gelten: f ′′(x) < 0. Daraus folgern wir (unter der Voraussetzung):

1

4
− 2

x3
!
< 0 ⇔ 1

4
<

2

x3
⇔ 1 <

8

x3

Wir unterscheiden:

• Für alle negativen x ist dies sicher falsch, denn dann ist x3 < 0 und somit auch 8

x3 < 0 < 1.

• x = 0 geht sowieso nicht, weil es sich dabei um eine Polstelle der Funktion handelt.

Es kommen somit also ausschliesslich positive Zahlen in Frage! Ausgehend von dieser Feststellung
können wir nun weiterrechnen:

1 <
8

x3
x>0⇔ x3 < 8 ⇔ x < 2

Damit haben wir die Lösung gefunden: Für alle x ∈]0; 2[ ist der Graph von f(x) rechtsgekrümmt. Oben

auf der nächsten Seiten habe ich ihn zur Verdeutlichung abgebildet.
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5. Als Erstes leiten wir ab und ermitteln die Tangentensteigung m:

f(x) =
1

x3
⇒ f ′(x) = − 3

x4
⇒ m = f ′(xP ) = − 3

x4P

Für die Steigungen zweier zueinander senkrecht stehender Geraden gilt stets

m ·m⊥ = −1

und somit folgt für die Steigung von t⊥:

m⊥ = − 1

m
=

x4P
3

Mit den Koordinaten von P , also mit P (xP ,
1

x3

P

), notieren wir für die Gleichung der Senkrechten t⊥:

t⊥(x) = m⊥(x− xP ) + yP =
x4P
3
(x− xP ) +

1

x3P

Soll t⊥ durch den Ursprung verlaufen, so muss t⊥(0) = 0 sein. Daraus schliessen wir auf xP :

t⊥(0) =
x4P
3
(0− xP ) +

1

x3P

!
= 0 ⇔ x5P

3
=

1

x3P
⇒ x8P = 3 ⇒ xP = ± 8

√
3

Bemerke: Der Gf hat auch einen negativen Ast, der in der Grafik in der Aufgabenstellung nicht zu
sehen ist. Der Punkt P kann aber ebenso gut dort drauf liegen. Wegen der Punktsymmetrie des Gf

liegen die beiden Lösungen symmetrisch zum Ursprung.

6. In der Grafik entdecken wir:

• Doppelte Nullstelle bei x = −2, einfache Nullstelle bei x = 1.

• Gerade Polstelle bei x = −1, ungerade Polstelle bei x = 2.

• Horizontale Asymptote auf der Höhe y = −2.

Diese drei Aspekte lassen sich in einem Bruch vereinen:

f(x) =
−2(x+ 2)2(x− 1)

(x+ 1)2(x− 2)
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7. Damit das Volumen der Rinne maximal wird, muss die Querschnittsfläche A möglichst gross sein. Diese
Trapezfläche dient uns also als Zielfunktion. Wir notieren (Trapezformel A = a+c

2
· h mit a = 20 und

c = 20 + 2u):

A(u, h) =
20 + (20 + 2u)

2
· h = (20 + u) · h

Im rechtwinkligen Dreieck folgt mit dem Satz des Pythagoras:

h2 = 202 − u2 ⇒ h =
√

202 − u2

Damit schreiben wir die Zielfunktion, resp. ihr Quadrat neu:

A(u) = (20 + u) ·
√

202 − u2 resp. Q(u) = A2(u) = (20 + u)2(202 − u2) = (20 + u)3(20 − u)

Nun optimieren wir, indem wir die Ableitung gleich 0 setzen:

Q′(u) = 3(20 + u)2(20− u)− (20 + u)3 = (20 + u)2
(

3(20 − u)− (20 + u)
)

= (20 + u2)(40 − 4u)
!
= 0 ⇒ u = 10

Somit folgt für die Breite oben: c = 20 + 2u = 20 + 20 = 40 cm .

8. Die Zielfunktion ist die Oberfläche ohne Deckel → A. Sie soll minimal werden! Wir notieren dafür:

A(r, h) = G+M = πr2 + 2πrh

Als Nebenbedingung fordert die Aufgabenstellung das konstante Volumen 1, also:

V = Gh = πr2h
!
= 1 ⇒ h =

1

πr2

Damit wird die Oberfläche zu:

A(r) = πr2 + 2πrh(r) = πr2 +
2πr

πr2
= πr2 +

2

r

Jetzt leiten wir diese Zielfunktion nach r ab:

A′(r) = 2πr − 2

r2
!
= 0 ⇒ 2πr =

2

r2
⇒ r3 =

1

π
⇒ r =

1
3
√
π

Zum Schluss finden wir für das optimale Verhältnis aus Höhe und Radius:

h =
1

πr2
=

1

π · 1
3
√
π2

=
1

3
√
π3 · 1

3
√
π2

=
1
3
√
π
= r ⇒ h : r = 1 : 1

Es handelt sich eher um eine flache Dose, deren Durchmesser d = 2r doppelt so gross ist wie die Höhe.
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9. (a) Es handelt sich um eine um vier Einheiten nach links verschobene Wurzelfunktion:

(b) Die Rechtecksfläche ist unsere Zielfunktion:

A(b, h) = b · h

Die Breite b des Rechtecks entspricht dem Betrag der x-Koordinate des Punktes P . Da xP negativ
sein soll, können wir schreiben: b = |xP | = −xP .

Die Höhe h des Rechtecks entspricht dem Betrag der y-Koordinate von P . Im 2. Quadranten ist
yP ein positiver Wert, sodass folgt: h = |yP | = yP = f(xP ) =

√
xP + 4.

Damit lautet die Zielfunktion in Abhängigkeit von xP :

A(xP ) = b(xP ) · h(xP ) = −xP ·
√
xP + 4

Um die Ableitung der Wurzel zu vermeiden, betrachten wir davon das Quadrat:

Q(xP ) = A2(xP ) = x2P (xP + 4) = x3P + 4x2P

Nun leiten wir ab und bestimmen die Maximalstelle(n):

Q′(xP ) = 3x2P + 8xP = xP (3xP + 8)
!
= 0 ⇒ xP = 0 oder xP = −8

3

Nur die negative Lösung liegt im Attraktivitätsintervall: −8
3
∈ ]− 4; 0[ ⇒ xP = −8

3
.

N.B.: Die maximale Fläche beträgt:

A

(

−8

3

)

=
8

3

√

−8

3
+ 4 =

8

3

√

−8 + 12

3
=

8

3

√

4

3
=

8 · 2
3
√
3
=

16
√
3

9
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