
5 Kinematik und Dynamik bei Kreisbewegungen

→ Wie spielen die Kräfte bei Kreisbewegungen zusammen?

5.1 Das Musterbeispiel: Der VBZ-Bus

Auch die Kreisbewegung veranschaulichen wir uns am Beispiel des VBZ-Busses. Der Bus fahre mit
konstanter Geschwindigkeit durch eine Kurve. Wir sprechen von einer gleichförmigen Kreisbewe-
gung (gfK). Folgende Angaben gelten für die Kurvenfahrt des Busses:

• Die Masse des Busses beträgt immer noch 26.0 t.

• Die Kurve besitze einen Kurven- oder Bahnradius von 63 m.

• Die (Bahn-)Geschwindigkeit des Busses sei konstant und betrage v = 12.5 m
s .

5.2 Die Kinematik der gleichförmigen Kreisbewegung (gfK)

Ein Körper, der gleichmässig eine Kreisbahn abfährt, beschreibt eine gleichförmige Kreisbewegung
(gfK). Seine Geschwindigkeit bezeichnet man in diesem Fall als Bahngeschwindigkeit und es gilt:

Bahngeschwindigkeit bei der gleichförmigen Kreisbewegung (gfK)

Beschreibt ein Körper eine gleichförmige Kreisbewegung mit Bahnradius r

und Umlaufszeit T , so gilt für seine Bahngeschwindigkeit v:

v =
2πr

T
= 1 Kreisumfang pro 1 Umlaufszeit (22)

Würde der VBZ-Bus eine Runde in einem Kreisel fahren, so ergäbe sich für seine Umlaufszeit aus
Gleichung (22):

v =
2πr

T
→ T =

2πr

v
=

2π · 63 m

12.5 m
s

= 32 s

Der Geschwindigkeitsbetrag v bleibt bei einer gfK konstant. Zur Geschwindigkeit gehört aber auch
eine Richtung. Sie muss vollständigerweise als Vektor (= Pfeil) dargestellt werden: "v. Bei einer
Kreisbewegung liegt die momentane Bewegungsrichtung "v stets auf einer Tangente an die Kreisbahn!
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Der Körper muss nun eine Beschleunigung erfahren, welche für die Veränderung der Bewe-
gungsrichtung verantwortlich ist, den Geschwindigkeitsbetrag aber unverändert lässt. Diese
Art von Beschleunigung nennt man Zentripetalbeschleunigung "aZ.

Die Zentripetalbeschleunigung !aZ

Beschreibt ein Körper eine gfK mit der Bahngeschwindigkeit v und dem
Bahnradius r, so muss er unter dem Einfluss einer Zentripetalbeschleuni-
gung "aZ stehen. Diese steht stets senkrecht zur aktuellen Bewegungsrichtung
"v und zeigt ins Zentrum der Kreisbahn. Ihr Betrag ist gegeben durch:

aZ =
v2

r
(23)

Anmerkungen zur Zentripetalbeschleunigung

• Gleichung (23) für den Betrag von aZ lässt sich herleiten, indem man sich überlegt, wie sich die
Geschwindigkeitsrichtung bei einer Kreisbewegung momentan verändern muss. Bis jetzt steht
uns die Mathematik (Vektorgeometrie, Di!erentialrechnung) für diese Herleitung allerdings
nicht zur Verfügung, weshalb wir an dieser Stelle darauf verzichten und die Gleichung so
“akzeptieren” wollen.

• Der Vorsatz zentripetal wurde durch Newton geprägt. Er bedeutet soviel wie “nach der Mitte
(des Kreises) strebend” (petere = lat. Verb für “streben nach” oder “zielen”).

• Im Beispiel des VBZ-Busses erhalten wir für den Zentripetalbeschleunigungsbetrag mit (23):

aZ =
v2

r
=

(

12.5 m
s

)2

63 m
= 2.5

m

s2

Zur nochmaligen Verdeutlichung: Der Bus wird durch diese Zentripetalbeschleunigung weder
schneller, noch langsamer. Sie hält ihn lediglich auf seiner Kreisbahn!

5.3 Die Dynamik der gleichförmigen Kreisbewegung (gfK)

Das Aktionsprinzip (= 2. Newtonsches Axiom) erklärt uns den Zusammenhang zwischen Kraft und
Bewegung: Die Zusammenfassung aller wirkenden Kräfte zu einer einzigen, resultierenden Kraft Fres

zeigt stets in die Richtung der Beschleunigung a. Für die Beträge gilt nach wie vor:

Fres = m · a

Dies gilt auch für Kreisbewegungen! Ein Körper, der eine gfK beschreibt, muss eine resultierende
Kraft "Fres erfahren, welche in die Richtung der Zentripetalbeschleunigung "aZ, also ins Zentrum der
Kreisbahn zeigt. Für den Betrag dieser resultierenden Kraft folgt mit (14) und (23) sofort:

Fres = m · aZ =
m · v2

r

Im Falle einer gfK bezeichnen wir die resultierende Kraft "Fres neu als Zentripetalkraft "FZ. Dies ist
lediglich ein neuer Name! Es gibt daran nichts Neues zu verstehen.

Zentripetalkraft !FZ = Bezeichnung für die resultierende Kraft !Fres im Falle einer gfK
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Das Aktionsprinzip bei der gleichförmigen Kreisbewegung (gfK)

Ein Körper beschreibt genau dann eine gfK, wenn die resultierende Kraft
"Fres senkrecht zu seiner aktuellen Bewegungsrichtung "v steht. In diesem Fall
bezeichnen wir "Fres als Zentripetalkraft "FZ.

Bewegt sich ein Körper der Masse m mit der Bahngeschwindigkeit v auf einer
Kreisbahn mit Radius r, so gilt für den Betrag von "FZ:

FZ = m · aZ =
m · v2

r
(24)

Anmerkungen zur Zentripetalkraft

• Die Formel für FZ beinhaltet die wesentlichen physikalischen Aussagen:
Um einen Körper auf einer Kreisbahn zu halten, braucht man mehr Kraft, . . .

– je mehr Masse m der Körper besitzt (FZ ↑ m),

– je enger die Kurve, also je kleiner der Bahnradius r ist (FZ ↑ 1
r ),

– vor allem aber je grösser die Geschwindigkeit v des Körpers ist, denn sie fliesst qua-
dratisch in die Zentripetalkraft ein (FZ ↑ v2)!

• Der im Alltag so oft gehörte Begri! Zentrifugal- oder Fliehkraft meint nicht das Gleiche
wie die Zentripetalkraft! Wir kommen im Abschnitt 5.5 darauf zu sprechen.

5.4 Die Kräfte bei der Kurvenfahrt des VBZ-Busses
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Die auf den Bus wirkenden Kräfte lassen sich in den drei Richtungen des Raumes betrachten:

• aufwärts ↓ abwärts: Der Bus ist in vertikaler Richtung in Ruhe und es ist folgt:

FN = FG

• vorwärts ↓ rückwärts: Der Bus fährt mit konstanter Geschwindigkeit in Vorwärtsrichtung.
Laut dem Trägheitsprinzip gilt daher:

FM = FR,Roll + FL

Der Motor zieht in Vorwärtsrichtung, um Rollreibung und Luftwiderstand zu kompensieren.

• rechts ↓ links: Nehmen wir an, der Bus befinde sich in einer Linkskurve. Dann muss er
zwangsläufig aus irgendeinem Grund eine Kraft nach links erfahren, denn als resultierende
Kraft muss eine Zentripetalkraft nach links, also ins Zentrum der Kreisbahn entstehen.

Welche Kraft hält den Bus in der Kurve? Es ist die seitliche Haftreibung zwischen Pneus
und Strasse. Die Reifen rollen ja nur in Vorwärtsrichtung, seitlich haften sie! Es gilt also:

FZ = FR,Haft

Verfügt der Bus tatsächlich über die benötigte seitliche Haftung? Berechnen wir dazu einmal die
aktuelle Zentripetalkraft nach Gleichung (24):

FZ =
m · v2

r
=

26 000 kg ·
(

12.5 m
s

)2

63 m
= 64 500 N

Die Haftreibungszahl zwischen einer trockenen Strasse und Autopneus beträgt z.B. etwa µH = 0.85.
Dann folgt für die Haftreibungskraft FR,Haft gemäss Gleichung (18) auf Seite 28:

FR,Haft ↔ µH · FN = µH · FG = µH · m · g = 0.85 · 26 000 kg · 9.81
N

kg
= 217 000 N

Die maximal mögliche Haftreibung reicht also bei Weitem, um den Bus in der Kurve zu halten –
schliesslich handelt es sich ja um ein ö!entliches Verkehrsmittel, bei dessen Fahrt es niemals in die
Nähe der physikalischen Grenzen gehen sollte.

Umgekehrt lässt sich nun aber berechnen, wie schnell der Bus denn bei diesen Bedingungen maximal
sein dürfte, um sich gerade noch in der Kurve zu halten:

FZ = FR,Haft,max = 217 000 N

FZ =
m · v2

r
→ v =

√

FZ · r
m
=

√

217 000 N · 63 m

26 000 kg
= 22.93

m

s
= 83

km

h

Vielleicht hätten wir eine deutlich grössere maximale Geschwindigkeit erwartet, weil der Unterschied
zwischen aktueller Zentripetal- und maximal möglicher Haftreibungskraft oben so gross war:

FZ = 64 500 N % 217 000 N = FR,Haft,max

Hier widerspiegelt sich der quadratische Einfluss der Geschwindigkeit v in der Zentripetalkraft-
Gleichung FZ =

m·v2

2 .

Nebenbei: Die Rechnung ist so nicht ganz korrekt, denn die Motorenkraft, die zur Aufrechterhaltung
der Geschwindigkeit benötigt wird, ist eigentlich auch eine Komponente der Haftreibungskraft. Das
hat zur Folge, dass die maximal mögliche seitliche Haftreibung etwas geringer ist als oben berechnet.
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5.5 Scheinkräfte in beschleunigten Bezugssystemen

Will man das Aktionsprinzip (= 2. Newtonsches Axiom) anwenden, so darf das System, in wel-
chem die Kräfte und Bewegungen beschrieben werden, selber nicht beschleunigt sein. Solche nicht-
beschleunigten Bezugssysteme heissen Inertialsysteme.

Dies tri!t für die Strasse in guter Näherung zu, für den Bus hingegen nicht. Deshalb treten
innerhalb des Busses scheinbar Kräfte auf, die es von der Strasse aus gesehen gar nicht gibt. Wir
sprechen von Schein- oder Trägheitskräften. Hier seien zwei typische Beispiele ausgeführt:

“In den Sitz gedrückt werden”

Beschleunigt der Bus von der Strasse aus gesehen, so hat man innerhalb des Busses den Eindruck eine
Kraft nach hinten zu erfahren. Dies ist eine Scheinkraft! Sie entsteht, weil unsere Körper aufgrund
ihrer Masse träge sind und von sich aus in Ruhe bleiben würden. Der Innenraum des Busses ist
hingegen kein Inertialsystem. Er beschleunigt vorwärts. So entsteht für die Menschen im Bus der
Eindruck einer nach hinten wirkenden Kraft, gegen die sie sich stemmen müssen.

Die Zentrifugal- oder Fliehkraft

Macht der Bus eine Linkskurve, so würde sich unser Körper im Bus aufgrund seiner Trägheit aus
Sicht der Strasse weiter geradeaus bewegen. Der Bus beschleunigt aber (zentripetal) nach links, und
so entsteht innerhalb des Busses der subjektive Eindruck, eine Kraft nach rechts resp. in der Kurve
“nach aussen” zu erfahren. Genau diese Kraft – die es aus der Sicht der Strasse gar nicht gibt – wird
Zentrifugal- oder Fliehkraft genannt. Es ist eine Kraft, die nur innerhalb das Busses “existiert” –
eben eine Scheinkraft.

5.6 Kraftangaben als Vielfache des Ortsfaktors

Grundsätzlich lässt sich jede beliebige auf einen Körper wirkende Kraft F als Vielfaches der Ge-
wichtskraft FG ausdrücken, welche der Körper an der Erdoberfläche erfährt:

F = x · FG resp. x =
F

FG
“Wie oft steckt FG in F drin?”

Ist z.B. x = 5, also F = 5 · FG oder F
FG
= 5, so sagt man, auf den Körper wirken 5 g. Man gibt den

Vergleich also in Vielfachen des Ortsfaktors g an der Erdoberfläche an.
Solche vergleichenden Angaben haben sich besonders für Situationen mit starken Beschleuni-

gungen eingebürgert, wie die folgenden Beispiele zeigen sollen.

Beschleunigung im Formel-1-Auto

Die Beschleunigung eines Formel-1-Autos beträgt von 0 auf 100 km
h knapp a = 17 m

s2 .
Der Fahrer (z.B. 72 kg) erfährt diese Beschleunigung, weil seine Rückenlehne ihn mit der entspre-

chenden Normalkraft nach vorne schiebt. Aus einer Kräfteskizze wird klar, dass diese Normalkraft
der Rückenlehne gerade gleich der resultierenden Kraft sein muss. Mit dem Aktionsprinzip (14) folgt:

FN = Fres = m · a = 72 kg · 17
m

s2
= 1224 N

Für den Vergleich mit FG ist es aber gar nicht notwendig, den Wert der Normalkraft zu kennen. Das
gesuchte Vielfache ergibt sich direkt aus dem Vergleich von Beschleunigungswert und Ortsfaktor:

FN = x · FG → x =
FN

FG
=

Fres

FG
=

m · a
m · g

=
a

g
=

17 m
s2

9.81 m
s2

= 1.73

Der Fahrer wird beim Start also etwa mit 1.7 g in den Sessel gedrückt resp. von diesem beschleunigt.
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Beschleunigungen beim Wäscheschleudern

Wie stark wird die Wäsche beim Schleudern gegen die Trommelwand gedrückt?

Vorüberlegungen: Beim Schleudern drehe sich die Wäschetrommel mit 6 0 0 Umdrehungen pro
Minute. Dann dauert die einzelne Umdrehung T = 0.100 s.

Die Trommel besitze einen Radius von r = 24.0 cm. Aus (22) folgt für die Bahngeschwindigkeit:

v =
2πr

T
=

2π · 0.240 m

0.100 s
= 15.71

m

s

Für die Zentripetalbeschleunigung erhalten wir aus (23):

aZ =
v2

r
=

(

15.08 m
s

)2

0.240 m
= 947.5

m

s2

Kräftesituation: Wir betrachten einen Wäscheklumpen in drei Momenten der Drehung:

Folgerungen: In jedem der drei Momente erfährt der Wäscheklumpen total die gleich grosse Zen-
tripetalkraft FZ (= resultierende Kraft) in Richtung Trommelmitte, denn es handelt sich ja
um eine gfK mit fixem Radius und fixer Geschwindigkeit.

Allerdings setzt sich FZ in den drei Momenten unterschiedlich zusammen. Daraus schliessen
wir auf unterschiedliche Normalkräfte, welche die Wäsche erfährt. Diese lassen sich jeweils in
Vielfachen des Ortsfaktors angeben:

• Situation 1: Die Normalkraft muss zusätzlich die Gewichtskraft kompensieren:

FZ = FN,1 − FG → FN,1 = FZ + FG

→ x1 =
FN,1

FG
=

FZ + FG

FG
=

m · aZ + m · g
m · g

=
aZ

g
+ 1 =

947.5 m
s2

9.81 m
s2

= 96.59 + 1 = 97.6

Die Wäsche wird mit 97.6 g gegen die Wand gedrückt!

• Situation 2: Die Normalkraft ist gerade gleich der Zentripetalkraft, denn die Gewichts-
kraft wird durch die Reibungskraft kompensiert. Es folgt:

FN,2 = FZ → x2 =
FN,2

FG
=

aZ

g
=

947.5 m
s2

9.81 m
s2

= 96.59 = 96.6

Die Wäsche wird neu mit 96.6 g gegen die Wand gedrückt!

• Situation 3: Normalkraft und Gewichtskraft erzeugen gemeinsam die Zentripetalkraft:

FZ = FN,3 + FG → FN,3 = FZ − FG → x3 =
FN,3

FG
= 96.59 − 1 = 95.6

Die Wäsche wird “nur noch” mit 95.6 g gegen die Wand gedrückt!
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5.7 Das Newton’sche Gravitationsgesetz

Das Newtonsche Gravitationsgesetz

Als Gravitation (oder Schwer-/Gewichtskraft) "FG bezeichnen wir die anziehen-
de Kraft, welche zwei Körper aufgrund ihrer Massen aufeinander ausüben.

Für zwei Punktmassen m1 und m2 im Abstand r gilt für den Betrag dieser
anziehenden Kraft das sogenannte (Newton’sche) Gravitationsgesetz:

FG = G ·
m1 · m2

r2
(25)

Dabei bezeichnet G die universelle Graviationskonstante. Universell bedeutet:
G hat im ganzen Universum den gleichen Wert, nämlich:

G = 6.674 · 10−11 N ·m2

kg2

Anmerkungen zum Gravitationsgesetz

• Im Gravitationsgesetz werden sogenannte Punktmassen in die Rechnung eingesetzt. Damit
ist ein theoretisches Konstrukt gemeint. Man lässt die Massen der sich anziehenden Körper
auf Punkte zusammenschrumpfen, um einen sinnvollen Abstand zwischen ihnen zu definieren.

Bei überall gleich dichten Kugeln sitzt die Punktmasse genau im Mittelpunkt. Das gilt in
guter Näherung für Metallkugeln, aber eben auch für Sterne, Planeten und Monde. Um anders
geformte Körper brauchen wir uns kaum Gedanken zu machen, denn die Gravitation ist eine
so schwache Kraft, dass sie nur bei riesigen Massen wirklich spürbar und relevant wird.

• Die Gravitation ist proportional zu beiden beteiligten Massen.

• Entscheidend am Gravitationsgesetz (25) ist das Abstandsquadrat r2 im Nenner: Die Gravita-
tion nimmt mit zunehmendem Abstand r relativ rasch ab, weist aber trotzdem eine unendliche
Reichweite auf. Das folgende Diagramm zeigt dieses quadratische Abfallverhalten graphisch
und illustriert zudem, wie klein die Gravitation in Alltagssituationen ist.

Die beiden Schnellzuglokomotiven mit doch ansehnlichen 80 Tonnen Masse ziehen sich mit
gerademal einem knappen halben Millinewton an, wenn ihre Schwerpunkte einen Abstand von
30 Metern aufweisen – und näher können sie sich auf demselben Gleis kaum kommen! In 60
Metern Entfernung beträgt die Kraft nur noch ein Viertel. So funktioniert ein quadratisches
Abfallverhalten: Bei Verdoppelung der Distanz viertelt sich der Wert, denn 22 = 4.

43



5.8 Kreisbahnen von Himmelskörpern

Aus der Newtonschen Mechanik folgt, dass sich leichtere Himmelskörper auf elliptischen Bahnen
um viel massigere Zentralkörper bewegen. Dies gilt also z.B. für Satelliten/Monde um Planeten
oder Planeten/Kometen um Sonnen (Sterne).

Es ist mathematisch recht anspruchsvoll, die Newtonsche Mechanik allgemein für ellipitsche Bahnen
zu beschreiben. Viele Satelliten, Monde und Planeten – nicht hingegen Kometen – bewegen sich
allerdings auf nahezu kreisförmigen Bahnen um den Zentralkörper (Kreis = Spezialfall einer Ellipse
mit gleich grossen Halbachsen). Deshalb lassen sich deren Umlaufbewegungen bereits mit den uns
bekannten Gleichungen zur gfK gut beschreiben.

Die “Himmelsgleichung” = Gleichung für Massen, die gravitativ um einen viel massigeren
Zentralkörper kreisen

Himmelskörper bewegen sich alleine im nahezu perfekten Vakuum des Weltraums. Sie erfahren des-
halb keinerlei Reibungs- oder Kontaktkräfte. D.h., die einzige auf einen Himmelskörper wirkende
Kraft ist die Gravitation in Richtung des Zentralkörpers. Hier das Beispiel der um die Sonne krei-
senden Erde:

Diese alleinige Kraft "FG muss laut Newton gleich der resultierenden Kraft "Fres, und das bedeutet im
Falle einer Kreisbewegung eben gleich der Zentripetalkraft "FZ sein. Wir folgern:

“Himmelsgleichung” (Masse kreist um Zentralkörper): "FZ = "FG (26)

Durch Gleichsetzen der Kraftbeträge folgt aus (24) und (25):

FZ =
m · v2

r
= G ·

M · m
r2
= FG → v2 =

G · M
r

(27)

Dabei schreibt man für die Masse des Zentralkörpers gerne ein grosses M und für jene des kreisenden
Körpers ein kleines m.

Wie wir sehen, kürzt sich bei gravitativen Kreisbewegungen um Zentralkörper die Masse m

des kreisenden Körpers weg. Das ist immer so. Für die Umlaufszeiten oder Geschwindigkeiten von
Satelliten ist die Satellitenmasse also stets bedeutungslos.
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Bahnradius und Umlaufszeit

Ist alleine die Gravitation für eine kreisförmige Umlaufbahn verantwortlich, so gehört zu jedem
Bahnradius r eine ganz bestimmte Umlaufszeit T . Die mathematische Beziehung ergibt sich direkt
aus Gleichung (27), wenn auf der linken Seite die Gleichung (22) für die Bahngeschwindigkeit v bei
einer gfK eingesetzt wird:

v2 =
G · M

r
| v =

2πr

T

≃
4π2r2

T 2
=

G · M
r

| : (4π2r2)

≃
1

T 2
=

G · M
4π2 r3

| (. . .)−1

≃ T 2 =
4π2r3

G · M
| √. . .

→ T =

√

4π2r3

G · M

Soll ein Satellit auf einer bestimmten Höhe ausgesetzt werden, so ist dadurch also bereits vorgegeben,
wie lange seine Umlaufzeit zu dauern hat. Das gilt z.B. auch für das Space Shuttle. Arbeitet es mit
abgestelltem Antrieb auf einer Höhe von 450 km über der Erdoberfläche, so ergibt sich für die Dauer
einer Erdumrundung:6

T =

√

4π2r3

G · M
=

√√

4π2 · (6 820 000 m)3

6.674 · 10−11 N·m2

kg2 · 5.97 · 1024 kg
= 5607 s = 93 min

Geostationäre Satelliten

Umgekehrt kann man nun fragen, auf welcher Höhe ein Satellit positioniert werden muss, wenn man
eine bestimmte Umlaufszeit vorgeben möchte. Aus obiger Gleichung ergibt sich:

4π2r2

T 2
=

G · M
r

| ·
r · T 2

4π2

≃ r3 =
G · M · T 2

4π2
| 3
√
. . .

→ r =
3

√

G · M · T 2

4π2

Speziell nützlich für die Wetterbeobachtung sind geostationäre Satelliten. Diese stehen stets über
demselben Ort auf dem Äquator. Dies ist möglich, weil ihre Flughöhe so gross ist, dass die Umlaufszeit
gerade einen Tag beträgt. Berechnen wir den zugehörigen Bahnradius:7

r =
3

√

GMT 2

4π2
=

3

√

6.674 · 10−11 N·m2

kg2 · 5.97 · 1024 kg · (86 400 s)2

4π2
= 42.2 · 106 m = 42 200 km

Für die Höhe über Erdboden folgt: h = r − R = 42 200 km − 6370 km = 35 800 km. Geostationäre
Satelliten sind im Vergleich zu anderen Satelliten sehr weit von der Erde entfernt!

6Erdradius R = 6370 km → Bahnradius r = 6370 km + 450 km = 6820 km, Erdmasse M = 5.97 · 1024 kg
7T = 1 Tag = 24 · 3600 s = 86 400 s
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6 Arbeit, Energie und Leistung

→ Energetische Betrachtungen – allgemein und speziell für die Mechanik

6.1 Arbeit, Energie und Leistung beim VBZ-Bus

Die Kapitel 3 und 4 liefern sämtliche Daten, um zur Fahrt des Busses nun auch energetische Be-
trachtungen anzustellen. Diese werden hier als Beispiele dienen.

6.2 Die Definition der Arbeit W: “Arbeit ist Kraft mal Weg”

Vorgänge resp. Abläufe sind in der Regel mit einem Arbeitsaufwand verbunden. Die Physik möchte
den für einen Vorgang benötigten Arbeitsaufwand als Zahl mit Einheit angeben können. Dazu defi-
niert sie die Arbeit – resp. gedacht eben: den Aufwand für eine Arbeit – wie folgt:

Die Definition der Arbeit W (= Goldene Regel der Mechanik)

Auf einen Körper wirke eine konstante Kraft "F. Wird der Körper um die
Strecke s in die Richtung von "F bewegt (egal wie und warum), so wird
aufgrund dieser Kraft die Arbeit W am Körper verrichtet. Diese ist definiert
durch:

W = F · s (28)

“Arbeit = Kraft mal Weg.”

Anmerkungen zur Arbeitsdefinition

• Das Symbol W hat seinen Ursprung im englischen Wort work.

• Idee der Arbeitsdefinition: Bei (mechanischen) Vorgängen geht es um die Verschiebung
von Objekten. Zwei Faktoren machen eine solche Verschiebung aufwändig:

i. Es muss mehr Arbeit verrichtet werden, wenn die dafür benötigte Kraft gross ist ⇒ F.

ii. Je weiter die Verschiebung geht, desto mehr Arbeit muss verrichtet werden ⇒ s.

Die Kombination beider Aspekte lautet: “Arbeit ist Kraft mal Weg.” Diese Aussage bezeichnet
man auch als die Goldene Regel der Mechanik.

• Die Verschiebung des Körpers um die Strecke s muss in Richtung der Kraft !F erfolgen.
Nur genau dann gilt die Arbeitsdefinition in dieser Form.

• Der Kraftbetrag F muss über die Strecke hinweg konstant sein (oder es muss sich um
einen Mittelwert handeln), damit man sie in diese Definition einsetzen darf. Was sollte
man denn sonst für den Wert von F einsetzen?

• Die Arbeit W erhält eine eigene SI-Grundeinheit, das Joule J. Aus der Arbeitsdefinition folgt
für die Zusammensetzung des Joules aus SI-Grundeinheiten:

[ W ] = [ F ] · [ s ] = N ·m =
kg ·m2

s2
=: Joule = J
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Beispielrechnungen und -überlegungen am VBZ-Bus

Ungerundete Bewegungs- und Kraftdaten aus den Kapiteln 3 und 4:

Allgemein: Busmasse: m = 26 000 kg

Normalkraft: FN = FG = m · g = 255 060 N

Rollreibungszahl: µR = 0.0075

Rollreibungskraft: FR = µR · FN = 1913 N

1. Bewegungsabschnitt: Resultierende Kraft: Fres,1 = m · a1 = 46 429 N
(

a1 = 1.786
m

s2

)

Motorenkraft: FM,1 = Fres,1 + FR = 48 342 N

2. Bewegungsabschnitt: Motorenkraft: FM,2 = FR = 1913 N

3. Bewegungsabschnitt: Resultierende Kraft: Fres,3 = m · a3 = 65 000 N
(

(−) 2.5
m

s2

)

Bremskraft: FBrems,3 = Fres,3 − FR = 63 087 N

• Die Reibungskraft wirkt stets entgegen der Bewegungsrichtung des Busses. Das bedeutet, dass
der Bus aufgrund dieser Kraft selber Arbeit abgeben muss. Wir sprechen von Reibungsarbeit
WR. Diese lässt sich leicht berechnen, insgesamt und auf den drei Teilstrecken:

1. Bewegungsabschnitt: WR,1 = FR · s1 = 1913 N · 43.75 m = 83 694 J = 84 kJ

2. Bewegungsabschnitt: WR,2 = FR · s2 = 1913 N · 125 m = 239 125 J = 240 kJ

3. Bewegungsabschnitt: WR,3 = FR · s3 = 1913 N · 31.25 m = 59 781 J = 60 kJ

Gesamtreibungsarbeit: WR,total = WR,1 +WR,2 +WR,3 = 382 600 J = 380 kJ

• Solange der Buschau!eur aufs Gaspedal drückt, verrichtet der Motor Arbeit am Bus, denn die
Motorenkraft zieht in Bewegungsrichtung ⇒ WM:

2. Bewegungsabschnitt: Auf diesem Bewegungsabschnitt verrichtet der Motor am Bus ins-
gesamt die Arbeit, die dieser in Form von Reibungsarbeit wieder abgibt:

WM,2 = WR,2 = 239 125 J = 240 kJ

1. Bewegungsabschnitt: Der Motor muss einerseits den Bus beschleunigen und andererseits
die Reibung kompensieren. Unter Verwendung der Arbeitsdefinition werden Beschleuni-
gungsarbeit WB,1 und Kompensation der Reibungsarbeit WR,1 gut erkennbar:

WM,1 = FM,1 · s1 = (Fres,1 + FR) · s1 = Fres,1 · s1
︸!!!!︷︷!!!!︸

=WB,1

+ FR · s1
︸!︷︷!︸

=WR,1

= 2031.3 kJ + 83.7 kJ = 2115 kJ ≈ 2.1 MJ

Das Anfahren ist deutlich aufwändiger als die gleichförmige Fortsetzung der Fahrt.

• Während dem Abbremsen (3. Bewegungsabschnitt) gibt der Bus nur noch Arbeit ab. Dies ge-
schieht aufgrund zweier Kräfte. Einerseits wirkt immer noch die Rollreibung. Andererseits gibt
es eine zusätzliche Haftreibung zwischen Pneus und Strasse, welche von der Verlangsamung
der Räder aufgrund der Bremsen herrührt. Für diese abgegebene Bremsarbeit WBrems,3 gilt:

WBrems,3 = FBrems,3 · s3 = 63.087 kN · 31.25 m = 1972 kJ = 2.0 MJ
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6.3 “Der Arbeitsbetrag ist prozessunabhängig!”

Die an einem Körper verrichtete Arbeit verändert automatisch dessen Zustand.
Was damit gemeint ist, verstehen wir besser am konkreten Beispiel: Die Beschleunigungsarbeit

im 1. Bewegungsabschnitt bringt den VBZ-Bus von Geschwindigkeit 0 (= erster Bewegungszustand)
auf 12.5 m

s (= zweiter Bewegungszustand).
Für die Beschleunigungsarbeit WB darf es allerdings nicht darauf ankommen, wie diese Beschleu-

nigung abläuft. Wenn wir alle Störe!ekte, insbesondere alle Arten von Reibung, ausblenden, sollte
für das Erreichen der Endgeschwindigkeit stets derselbe Aufwand, also der gleiche Arbeitsbetrag
benötigt werden. Das ist eine wesentliche Anforderung an eine sinnvolle Arbeitsdefinition!

Beim VBZ-Bus darf es also keine Rolle spielen, mit welcher Beschleunigung er seine Endgeschwin-
digkeit von 12.5 m

s erreicht, die Beschleunigungsarbeit WB muss stets denselben Wert aufweisen.
Tatsächlich genügt die Arbeitsdefinition W = F · s dieser Anforderung, was am Beispiel des VBZ-

Busses auch ganz plausibel wird: Entweder beschleunigt der Bus mit grosser Kraft F, also auch mit
grosser Beschleunigung, dann braucht er aber nur eine kurze Beschleunigungsstrecke s. Oder der
Bus beschleunigt langsam, also mit geringer Kraft F, was aber eine längere Beschleunigungsstrecke
s zur Folge hat.

Dass unsere Arbeitsdefinition vom tatsächlichen Prozessablauf unabhängige Arbeitsbeträge lie-
fert, ist enorm wichtig, denn dies wird es uns ermöglichen Energie als das in einem Zustand gespei-
cherte Arbeitsvermögen zu definieren (vgl. Abschnitt 6.5). Dieser enorm fruchtbare und weitreichende
Gedanke ist wohl der eigentlich Grund, weshalb die Arbeitsdefinition (28) als Goldene Regel der
Mechanik bezeichnet wird.

6.4 Exkurs: Kraftwandler

Wie eben im Abschnitt 6.3 erläutert, ist der Arbeitsaufwand für eine bestimmte Zustandsänderung
unabhängig vom Prozess, mit dem diese Zustandsänderung erreicht wird. Das bedeutet aber, dass
es für uns “beim Arbeiten” resp. bei der Konstruktion von Maschinen gewisse Freiheiten gibt. Ganz
explizit ausgedeutscht: Wir können selber entscheiden, mit wie viel Kraft F ein Prozess verrichtet
wird, solange es uns gleich ist, welche Wegstrecke s dafür zurückgelegt werden muss. Die für den
Prozess benötigte Arbeit W = F · s bleibt dadurch unverändert!

Technische Hilfsmittel erlauben uns also die für einen Vorgang benötigte Kraft selber einzustellen.
Solche Hilfsmittel nennen wir Kraftwandler. Hier ein paar ganz typische Beispiele (Bilder dazu finden
sich auf der nächsten Seite):

Normaler Flaschenzug: Ein Gewicht wird am selben Seil n-fach aufgehängt. Dadurch reduziert
sich die Zugkraft im Seil um den Faktor n: FZ =

FG

n . Gleichzeitig ist die Seilstrecke s, die
man aus dem Flaschenzug herausziehen muss, um das Gewicht um eine bestimmte Höhe h

anzuheben, n-mal so gross: s = n · h! Es gilt also für das Anheben des Gewichts:

Arbeit mit Flaschenzug = FZ · s =
FG

n
· n · h = FG · h = Arbeit mit nur einem Seil

Hebel: Hebel sind wohl die klassischsten Kraftwandler: eine kleine Kraft F1 kann über einen längeren
Hebelarm r1 (= Abstand zur Drehachse) in eine grössere Kraft F2 bei kürzerem Hebelarm
r2 umgewandelt werden. Es gilt das sogenannte Hebelgesetz, das in direkter Verwandtschaft
mit unserer Arbeitsdefinition steht:

Hebelgesetz: F1 · r1 = F2 · r2

Nach diesem Prinzip arbeiten z.B. Zangen, Nussknacker, Brecheisen, Schraubenschlüssel,
Türfallen, etc. Wenn man bedenkt, wo das Hebelprinzip überall zur Anwendung kommt, wäre
eine Welt ohne Hebel für uns vermutlich wesentlich mühsamer. . .
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Zahnräder/Getriebe: Bei der Übersetzung von einem kleineren auf ein grösseres Zahnrad gewinnt
der Mechanismus an Kraft. Allerdings muss sich das kleinere Zahnrad schneller drehen als das
grosse. Umgekehrt lässt sich so auf Kosten der Kraft eine grosse Geschwindigkeit erzeugen.

Zahnräder spielen in Getrieben eine grosse Rolle. Z.B. entwickeln Verbrennungsmotoren in Au-
tos bei bestimmten Drehzahlen besonders viel Kraft. Dann sollte man darauf achten, dass das
Auto normalerweise mit dieser Drehzahl fährt und das Zahnradgetriebe hinter dem Motor die
entsprechende Übersetzung auf die gewünschte Fahrtgeschwindigkeit bewerkstelligen lassen.

Natürlich gilt Analoges beim Fahrradfahren: Es ist nicht möglich mit beliebig viel Kraft in die
Pedale zu treten. Daher schalten wir einen Gang runter, wenn es bergauf geht. . .

Rampe: Das Hochziehen eines Gewichts über eine Rampe verringert die Zugkraft FZ. Die Ge-
wichtskraft FG, die Sie beim gleichförmigen vertikalen Hochziehen des Gewichts kompensieren
müssten, wird auf die Parallelkomponente FG,‖ = FG · sinα reduziert. Hingegen ist der Weg
über die Rampe länger: s = h

sinα , sodass immer noch der gleiche Arbeitsaufwand anfällt:

Zugarbeit über Rampe = FZ · s = FG,‖ · s = FG · sinα ·
h

sinα
= FG · h

Hydraulische Hebebühnen: In hydraulischen Hebevorrichtungen übernimmt der Druck in der Flüssig-
keit die Rolle eines Kraftwandlers. Wie das genau geht, erfahren wir im Kapitel 7.
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6.5 “Energie ist gespeichertes Arbeitsvermögen”

Die an einem Körper verrichtete Arbeit W geht nicht einfach verloren. Sie ist im Zustand des Körpers
gespeichert und unter Umständen wieder abrufbar. Eine solche gespeicherte Arbeit bezeichnen wir
als Energie:

Die physikalische Definition der Energie E

Die Energie eines Zustandes ist das in diesem Zustand gespeicherte Arbeits-
vermögen. Dabei ist der Ausdruck “gespeichert” im doppelten Sinn zu verstehen:

1. Bezogen auf die Vergangenheit:

Es war Arbeit nötig, um diesen Zustand zu erreichen.

2. Bezogen auf die Zukunft:

Die im Zustand vorhandene Energie kann als Arbeit abgegeben werden.

Energie ist gespeichertes Arbeitsvermögen. Darin stecken sowohl Nutzen, als auch Gefahr. Den
energiereichen Zustand eines Systems erkennen wir genau daran, dass er eben nützlich, aber genauso
gefährlich sein kann. Denke z.B. an einen Kanister Brennsprit, an einen Stausee, oder an eine
Steckdose. Gefahr und Nutzen gehen Hand in Hand!

Beispielüberlegung am VBZ-Bus

Die im 1. Bewegungsabschnitt am Bus verrichtete Beschleunigungsarbeit WB,1 speichert der Bus in
Form von kinetischer Energie Ekin,2 (= Bewegungsenergie). Diese Energie bleibt im 2. Bewegungs-
abschnitt erhalten, da sich der Bus gleichförmig bewegt. Im letzten Abschnitt der Fahrt gibt der Bus
diese Energie wieder ab, und zwar in Form von Reibungs- und Bremsarbeit WR,3 und WBrems,3. Man
bemerke also (vgl. Werte auf Seite 47):

Ekin,2 = WB,1 = WBrems,3 +WR,3 in Zahlenwerten: 2031.3 kJ ≈ 1972 kJ + 59.8 kJ

6.6 Hubarbeit WHub und potentielle Energie Epot

Beim Anheben eines Körpers wird Hubarbeit WHub an ihm verrichtet. Diese Arbeit erfolgt gegen
die Gewichtskraft FG. Die Höhendi!erenz h entspricht der zurückgelegten Strecke. Aus der Arbeits-
definition (28) und der Gleichung (17) für die Gewichtskraft folgt:

WHub = FG · h = m · g · h

Hubarbeit speichert der Körper in Form von Höhenenergie, die auch als Energie der Lage oder
potentielle Energie Epot bezeichnet wird.

Berechnung einer potentiellen Energie Epot

Befindet sich ein Körper der Masse m auf der Höhe h über einem vorher definierten
Nullniveau (NN), so besitzt er bezogen auf dieses Nullniveau eine potentielle Energie
Epot von:

Epot = m · g · h (29)

Die potentielle Energie ist die gespeicherte Hubarbeit WHub, die benötigt wurde, um
den Körper vom Nullniveau auf die Höhe h anzuheben.
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Anmerkungen zur Hubarbeit WHub und zur potentiellen Energie Epot

• Bei der Angabe einer potentiellen Energie muss zwingend ein Nullniveau (NN) angegeben
werden. Ansonsten weiss man gar nicht, worauf sich die Energieangabe bezieht. Ohne Dekla-
ration des Nullniveaus bleibt die Angabe einer potentiellen Energie bedeutungslos. Häufig legt
aber bereits die Situation ein “natürliches” Nullniveau fest.

Z.B. ist das Nullniveau der potentiellen Energie bei einem Wasserkraftwerk in den Bergen
sinnvollerweise gegeben durch die Höhenlage der Turbinen.

• 1 Newton, also die SI-Einheit der Kraft, entspricht gerade etwa der Gewichtskraft einer Tafel
Schokolade (vgl. Seite 27). Auch beim Joule, also bei der SI-Einheit von Arbeit und Energie,
gibt es das einfache “Schokoladentafel-Beispiel” zur Verdeutlichung.

Das Anheben einer Schokoladentafel (m ≈ 100 g) um einen Meter benötigt eine Hubarbeit von
gerade etwa 1 Joule:

WHub = m · g · h = 0.1 kg · 9.81
N

kg
· 1 m = 0.981 J ≈ 1 J

6.7 Beschleunigungsarbeit WB und kinetische Energie Ekin

Beim der Beschleunigung eines Körpers wird Beschleunigungsarbeit WB an ihm verrichtet. Diese
Arbeit ist gekoppelt an die für die Beschleunigung benötigte resultierende Kraft Fres. Die in der
Arbeitsdefintion auftretende Strecke ist die Strecke s, über welche hinweg das schneller Werden
stattfindet.

Zur Herleitung der Beschleunigungsarbeit WB betrachten wir eine gleichmässig beschleunigte Be-
wegung ohne Anfangsgeschwindigkeit (gmbBoA). Aus der Arbeitsdefinition (28), dem Aktionsprinzip
(14) und der Bewegungsgleichung (8) von Seite 19 folgt:

WB = Fres · s = m · a · s = m · a ·
v2

2a
=

m · v2

2

Beschleunigungsarbeit speichert der Körper in Form von Bewegungsenergie, die auch als kinetische
Energie Ekin bezeichnet wird.

Berechnung einer kinetischen Energie Ekin

Besitzt ein Körper der Masse m die Geschwindigkeit v, so trägt er eine kinetische
Energie Ekin von:

Ekin =
m · v2

2
(30)

Die kinetische Energie ist die gespeicherte Beschleunigungsarbeit WB, die benötigt
wurde, um den Körper aus dem Stand auf die Geschwindigkeit v zu bringen.

Am Beispiel des VBZ-Busses sei gezeigt, wie sich die Beschleunigungsarbeit resp. die kinetische
Energie in einem konrekten Fall berechnen lässt. Die im 1. Bewegungsabschnitt verrichtete Be-
schleunigungsarbeit WB,1 bleibt als kinetische Energie Ekin,2 während dem 2. Abschnitt gespeichert:

Ekin,2 = WB,1 =
m · v2

2
=

26 000 kg ·
(

12.5 m
s

)2

2
= 2 031 000 J = 2031 kJ

Denselben Wert haben wir bereits auf Seite 47 erhalten (2031.3 kJ). Die kleine Abweichung ist auf
die Rundung des dort verwendeten Betrags für die resultierende Kraft zurückzuführen.
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6.8 Weitere Energieformen

Neben potentieller und kinetischer Energie gibt es zahlreiche weitere Energieformen. D.h., es be-
stehen diverse weitere Möglichkeiten, wie im Zustand eines Körpers oder eines Systems von Körpern
Arbeit gespeichert sein kann. Hier eine Auswahl:

• Rotationsenergie Erot

Dreht sich ein Körper um eine Achse, so ist auch in dieser Art der Bewegung Energie enthalten.
Es handelt sich um eine spezielle Form der kinetischen Energie.

Ein typisches Beispiel sind Schwungräder in Motoren und Schleifmaschinen. Die in der Dreh-
bewegung enthaltene Energie wird bei Bedarf dazu eingesetzt, die Drehbewegung aufrecht zu
erhalten. Das Schwungrad sorgt so für ein gleichmässiges Drehen. Auch in der Kreisbewegung
von Planeten um die Sonne ist Rotationsenergie enthalten.

• Elastische Energie EF

Dehnbare Gegenstände, z.B. eine Spiralfeder, enthalten in ihrem angespannten Zustand ela-
stische Energie. Man sagt auch Federenergie (daher das F im Index).

Ein gespannter Pfeilbogen ist ein schönes Beispiel für elastische Energie.

Epot, Ekin, Erot und EF werden auch als mechanische Energieformen bezeichnet.

• Innere Energie Ein

Alle Sto!e können Energie in sich aufnehmen. Sinngemäss sagen wir dieser Energieform innere
Energie. Wir bemerken sie vor allem anhand der Temperatur eines Körpers. (Diese innere
Energie ist übrigens nichts anderes als die kinetische und die potentielle Energie der Atomen
oder Molekülen, aus denen sich der Körper zusammensetzt.)

Niemand wird die Gefahren bestreiten, die in einer heissen Herdplatte oder in siedendem Wasser
stecken.

• Elektrische Energie Eel

Unter elektrischen Ladungen herrschen anziehende und abstossende Kräfte. Wie bei der po-
tentiellen Energie, die auf der Anziehung von Massen beruht, gibt es eine elektrische Energie,
die je nach gegenseitiger Lage der Ladungen grösser oder kleiner ist. Aufgrund von elektrischer
Energie bewegen sich Ladungen, wird also Strom hervorgerufen.

Wir verwenden diese elektrische Energie, wenn wir ein Gerät an die Steckdose anschliessen.
Dem Elektrizitätswerk bezahlen wir die gelieferte Menge an elektrischer Energie. Der Blitz ist
das Paradebeispiel für das Freiwerden von elektrischer Energie. Der Zustand vor der Entladung
der aufgeladenen Wolken ist o!ensichtlich sehr gefährlich.

• Strahlungsenergie ES

Licht und andere Sorten von Strahlung tragen Energie. Dies merken Sie z.B. an einem schönen
Tag. Trotz geschlossener Augen nehmen Sie die Richtung wahr, aus welcher die Strahlung
kommt. Beim Auftre!en auf Ihre Haut wird ein Teil der Strahlungsenergie in innere Energie
umgewandelt. Sie spüren eine Erwärmung. Die Strahlungsenergie der Sonne möchten wir in
Zukunft technisch besser ausnutzen, da sie uns gratis zur Verfügung steht (⇒ Fotovoltaik
(Solarzellen), Sonnenkollektoren, Solarkraftwerke).

Sehr energiereiche Strahlung ist für uns Menschen gefährlich. Denken Sie z.B. an ultraviolette
Strahlung (UV → Sonnenbrand), an Röntgenstrahlung oder auch an radioaktive Strahlung
(hohe Dosen → Krebs oder sogar direkte Verbrennungen).
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• Chemische Energie Echem

Viele chemische Reaktionen laufen spontan ab, weil dabei chemische Energie freigesetzt wird.
D.h., die an der Reaktion beteiligten Atome besitzen vor der Reaktion mehr Energie als nach-
her. Diese überzählige Energie wird bei der Reaktion frei. Man nennt sie auch Bindungsenergie.
Möchte man die entstandene Verbindung wieder auftrennen, so muss man ihr die Bindungs-
energie wieder zuführen.

Typische Beispiele für die Freisetzung von chemischer Energie sind Verbrennungsvorgänge
(Verbindung mit Sauersto!atomen). Z.B. verbrennen wir Heizöl zur Bescha!ung von Wärme
(innere Energie) oder Benzin in einem Motor, damit ein Auto fährt, also mit kinetischer Energie
versorgt wird.Ganz o!ensichtlich werden die mit der chemischen Energie verbundenen Gefahren
bei sehr heftigen Reaktionen wie beispielsweise Explosionen von Treibsto!en.

6.9 Der Energieerhaltungssatz – allgemein und speziell für die Mechanik

Die Gleichungen (29) und (30) zeigen, wie sich potentielle und kinetische Energien in einer konkreten
Situation berechnen lassen. Im Prinzip kann man zu allen Energieformen eine solche Berechnungs-
gleichung aufstellen.

Die Gesamtenergie Etot eines Systems lässt sich somit in jedem beliebigen Zustand genau
bestimmen. Sie ist die Summe über alle im System vorkommenden einzelnen Energieformen:

Etot = Summe über alle vorhandenen Energieformen

Wichtig dabei ist die genaue Abgrenzung des Systems: Welche Körper gehören zum betrachteten
System und welche nicht? Erst wenn das klar ist, kann man die im System auftretenden Energieformen
studieren.

Ist das System so bescha!en, dass es mit Körpern ausserhalb des Systems keine Energie aus-
tauscht, so bezeichnen wir es als abgeschlossenes System. D.h., wenn am System keine Arbeit
verrichtet wird und das System selber auch keine Arbeit abgibt, so ist es abgeschlossen.

Der allgemeine Energieerhaltungssatz (Mayer, Joule, Helmholtz)

In einem abgeschlossenen System bleibt die Gesamtenergie erhalten:

Etot = konstant

Alternative Formulierung: Die Summe über die Energien aller an einem Vor-
gang beteiligten Körper (= bezüglich diesem Vorgang abgeschlossenes System)
bleibt konstant. Egal, welcher Vorgang abläuft, die Gesamtenergie bleibt da-
durch unverändert! Sie hat vor, während und nach dem Vorgang den genau
gleichen Wert.

Energie kann weder erzeugt, noch vernichtet, sondern lediglich von einer Ener-
gieform in eine andere Energieform umgewandelt werden!

Bisher wurde kein Vorgang beobachtet, welcher dem Prinzip der Energieerhaltung widersprechen
würde. Es ist o!enbar eines der fundamentalsten Naturgesetze.

Da auch das Universum als Ganzes sinnvollerweise als abgeschlossenes System betrachtet werden
muss, ist die Gesamtenergie des Universums konstant, und zwar seit jeher, also seit dem Urknall.

53



Der Energieerhaltungssatz lässt sich wie folgt auf mechanische Abläufe einschränken:

Der Energieerhaltungssatz der Mechanik

Bei reibungsfreien Vorgängen bleibt die Summe über die mechanischen
Energieformen (Epot, Ekin, Erot, EF) aller beteiligten Körper konstant.

Anmerkungen zur Energieerhaltung in der Mechanik

• Zur Erinnerung: Mechanische Energieformen sind Epot, Ekin, Erot und EF.

• Der freie Fall ist ein Beispiel für einen reibungsfreien Prozess. Bei vernachlässigbar kleinem
Luftwiderstand ist die Energieerhaltung gewährleistet. Betrachten wir einen Ball mit der Masse
m, der aus einer Höhe von 2.0 m fallen gelassen wird:

Zustand 1: Beim Loslassen besitzt der Ball noch keine kinetische Energie, da er noch keine
Geschwindigkeit hat. Hingegen verfügt er dank seiner Höhe h1 = 2.0 m über die potentielle
Energie Epot,1 (Boden = Nullniveau).

Fallvorgang: Während dem Fallen verliert der Ball sukzessive an potentieller Energie, da seine
Höhe geringer wird. Gleichzeitig steigt seine kinetische Energie an, da er schneller wird.
Die potentielle Energie wandelt sich in kinetische Energie um.

Zustand 2: Genau dann, wenn der Ball am Boden ankommt, ist seine potentielle Energie
vollständig in kinetische Energie Ekin,2 umgewandelt worden. Er besitzt keine Höhe mehr.
Hingegen hat er nun die Geschwindigkeit v2 erreicht.

Anwendung der Energieerhaltung: Die Umwandlung von potentieller in kinetische Energie
vollständig ist, solange der Fallvorgang reibungsfrei war. Daraus folgt:

Ekin,2 = Epot,1 |Formeln einsetzen

→
m · v2

2

2
= m · g · h1 | ·

2

m
und

√
. . .

→ v2 =
√

2 · g · h1 |Werte einsetzen

=

√

2 · 9.81
N

kg
· 2.0 m = 6.3

m

s

Die formale Lösung v2 =
√

2 · g · h1 entspricht übrigens genau der Gleichung (8) von
Seite 19. Der Fallvorgang ist eine gleichmässig beschleunigte Bewegung ohne Anfangsge-
schwindigkeit (gmbBoA). Die zurückgelegte Strecke entspricht der Anfangshöhe (s = h1)
und der Fallvorgang läuft mit der Fallbeschleunigung g ab (a = g).

Beim Aufprall schliesslich ist die mechanische Energieerhaltung zuende. Je nach Art des Balles
und des Bodens geht mehr oder weniger mechanische Energie verloren.

Bei einem Gummiball könnten z.B. pro Aufprall 20% der mechanischen Energie verloren gehen.
Der Energieverlust trägt zu den inneren Energien des Bodens und des Balles bei (→ minimale
Erwärmung). Ganz deutlich sichtbar wird dieser Energieverlust nach dem Bodenkontakt. Der
Ball erreicht dann nur noch 80% seiner anfänglichen Höhe.

Interessant sind die Vorgänge während dem Bodenkontakt. Der Ball wird auf kürzester Strecke
abgebremst, bevor er wieder in Aufwärtsrichtung beschleunigt wird. Die verbleibende mecha-
nische Energie steckt für einen kurzen Moment komplett in der elastischen Energie des Balls,
denn dieser wird während dem Bodenkontakt zusammengedrückt.
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• Beim VBZ-Bus lässt sich eher zeigen, wie die mechanische Energie im nicht-reibungsfreien
Fall verloren geht. Die vom Motor verrichtete Arbeit WMotor wird zwar zwischenzeitlich zur
kinetischen Energie des Busses. Am Ende ist diese Arbeit allerdings komplett in innere Energie
Ein der Strasse, der Pneus, der Reifen und der Umgebung übergegangen. Schuld daran ist die
Reibung. Sie führt stets zur Erhöhung der inneren Energie.

Definiert man als System hingegen den Bus, die Strasse und die nähere Umgebung zusammen,
so ist dieses System bezüglich der Bewegung des Busses tatsächlich in guter Näherung (und
über einen nicht allzu langen Zeitraum) abgeschlossen. Es gilt die Energieerhaltung. Die che-
mische Energie Echem, welche vor der Bewegung in Form des Benzins vorhanden war, ist nach
der Bewegung komplett in innere Energie Ein übergegangen. Dazwischen waren auch andere
Energieformen, wie kinetische und Rotationsenergie, beteiligt.

6.10 Die Definition der Leistung P: “Leistung ist Energieumsatz pro Zeit”

In Prozessen wird Energie umgesetzt. Arbeit muss verrichtet werden oder es wird Arbeit frei, Energie
wird von einem Körper auf einen anderen übertragen oder von einer Form in eine andere umgewan-
delt, etc. Alle Vorgänge sind mit Energieumsätzen ∆E verbunden.

Die Leistung P (engl. power) gibt nun an, wie rasch der Energieumsatz abläuft.

Die Definition der Leistung P

Ist ∆E der Energieumsatz während der Zeitspanne ∆t, so definieren wir die
Leistung P durch:

P :=
∆E

∆t
(31)

“Leistung = Energieumsatz pro Zeitspanne.”

Anmerkungen zur Definition der Leistung

• Zur Leistung gehört eine eigene SI-Einheit, das Watt:

[ P ] =
[ E ]

[ t ]
=

J

s
=

kg ·m2

s3
=: Watt =W

Die Zusammensetzung des Watts aus SI-Basiseinheiten ist in der Anwendung nicht besonders

wichtig (W = kg·m2

s3 ), dafür umso mehr der Zusammenhang mit der Energieeinheit Joule:

J = W · s “Ein Joule ist eine Wattsekunde.”

• Mit der Leistungseinheit Watt wird eine weitere, sehr gebräuchliche und grosse Energieeinheit
eingeführt, die Kilowattstunde (kWh). Es gilt:

Kilowattstunde = kWh = k ·W · h = 1000 ·W · 3600 s = 3 600 000 J = 3.6 MJ

Merke dir: Es sind immer Kilowattstunden (kWh), niemals Kilowatt pro Stunde (kW/h).
Diese Einheit gibt es nicht. Sie ist einfach falsch.

• Je nachdem, welche Art von Energie umgesetzt wird, spricht man z.B. von elektrischer Leistung
Pel, von Strahlungsleistung PS, von Beschleunigungsleistung PB, etc.

• Beim VBZ-Bus können wir z.B. die Beschleunigungsleistung im Bewegungsabschnitt 1 berech-
nen (Daten vgl. Seiten 12 und 51):

PB =
∆Ekin,1

∆t1
=

WB,1

∆t1
=

2 031 000 J

7.0 s
= 290 000 W = 290 kW
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6.11 Das Maschinenschema und der Wirkungsgrad einer Maschine

Jeder Prozess / jeder Vorgang / jede Maschine wandelt Energie einer ersten Form in Energie einer
zweiten Form um. D.h., es wird eine erste Art von Leistung eingespiesen (⇒ Pin) und es entsteht
eine ausgehende Art von Leistung (⇒ Pout).

In der Regel wird allerdings nicht nur die “beabsichtigte” Art von Energie ausgegeben, sondern
es entstehen Verluste. Man spricht von einer Verlustleistung PVerlust. Dies wird durch das Maschi-
nenschema des Prozesses, des Vorgangs oder der Maschine verdeutlicht:

Der Wirkungsgrad η (gr. eta) gibt an, wie gut eine Maschine, ein Prozess oder ein Vorgang darin
ist, eine erste Energieform in eine bestimmte andere umzuwandeln:

Die Definition des Wirkungsgrades η

Wird bei einem laufenden Prozess die Leistung Pout abgegeben, währenddem
die Leistung Pin zugeführt wird, so ist der Wirkungsgrad η des Prozesses
gegeben durch:

η :=
Pout

Pin
(32)

“Wirkungsgrad = abgegebene Leistung pro zugeführte Leistung.”

Anmerkungen zum Wirkungsgrad

• Je höher der Wirkungsgrad, desto besser vermag die Maschine aus der ihr zugeführten Leistung
die beabsichtigte Leistung zu erzeugen.

• Hier zwei Beispiele – ein eher gutes und ein eher schlechtes elektrisches Gerät:

Die Verlustleistung hat sehr häufig mit der Abgabe von Wärme (innere Energie) zu tun. Es
kommt allerdings darauf an, was man denn als Output-Energieform beabsichtigt hat. Bei einem
Wasserkocher ist z.B. die ans Wasser abgegebene Wärme beabsichtigt. Nur die Erwärmung
des Kochers selber und der Umgebung sind nicht gewollt.

• Im 1. Bewegungsabschnitt des VBZ-Busses ist die beabsichtigte Leistung die Beschleunigung.
Bezieht der Bus während diesem Bewegungsabschnitt eine elektrische Leistung von 390 kW

von der Fahrleitung, so beträgt sein Wirkungsgrad in diesem Moment:

η =
Pkin

Pel
=

290 kW

390 kW
= 0.74 = 74 %
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6.12 Energieproblematik und elektrischer Energieverbrauch im Alltag

Die Energieerhaltung besagt, dass Energie weder erzeugt, noch vernichtet werden kann. Daraus
könnte man fälschlicherweise folgern, dass stets genügend Energie vorhanden ist und wir uns keine
Sorgen um unsere Energieversorgung zu machen brauchen. Das ist so allerdings nicht richtig. Der
Grund dafür liegt in den Eigenschaften der inneren Energie:

• In der Regel ist innere Energie das energetische Endprodukt aller Prozesse.

Hat z.B. der VBZ-Bus seine Fahrt beendet, so ist praktisch die gesamte elektrische Energie
in innere Energie übergegangen. (Allenfalls hat der Bus während der Fahrt seine Batterie
aufgeladen oder er hat etwas an Höhe gewonnen, dann wäre ein Teil der Energie in Form von
elektrischer resp. potentieller Energie vorhanden geblieben.)

• Innere Energie ist nicht für die Umwandlung in andere Energieformen geeignet. Sie
kann nur sehr bedingt zum Betrieb von Maschinen verwendet werden.

Soll innere Energie dazu genutzt werden eine Maschine anzutreiben, so sind dafür grosse
Temperaturunterschiede nötig. Diese sind aber nicht einfach so vorhanden. Im Gegenteil: Die
innere Energie verteilt sich von selbst über alle Körper gleichmässig. Deshalb können Sie sich
z.B. an einer Heizung wärmen. Die Heizung besitzt eine höhere Temperatur als Sie, weshalb
sie beim Kontakt Wärme und damit innere Energie an Sie abgibt – und zwar im Prinzip so
lange, bis Sie dieselbe Temperatur wie die Heizung haben.

Das Wort Energieverbrauch muss also so verstanden werden, dass hochwertige Energieformen beim
Gebrauch von Maschinen in innere Energie umgewandelt werden. In dieser Form ist die Energie nicht
mehr weiter verwertbar. Daraus ergeben sich zwei Folgerungen für das Sparen von Energie:

• E!zienz = grösstmögliche Ausnutzung der Energie

Wir sollten überall versuchen möglichst e”ziente Maschinen (mit hohen Wirkungsgraden) zu
verwenden. So kann Energie eingespart werden.

• Su!zienz = genügsame Nutzung der Energiereserven

Wir sollten uns überlegen, ob wir wirklich so viel Energie benötigen, wie das heute der Fall ist.
Einschränkungen wären an vielen Orten denkbar und sinnvoll.

Insbesondere aus ökologischen Gründen möchte die Schweiz möglichst rasch die 2000 Watt-Gesellschaft
realisieren. Das hiesse, die Schweiz würde insgesamt so viel Energie verbrauchen, dass herunterge-
rechnet auf einen einzelnen Menschen eine andauernde Bezugsleistung von 2000 W herauskäme. Im
Jahr 2022 hat die Schweiz ungefähr eine pflegen wir eine 3600 W-Gesellschaft gepflegt. Da sollte
also unbedingt noch etwas passieren!

Persönliches Energierechnen punkto Verbrauch an elektrischer Energie

Auf den meisten elektrischen Geräten wird angegeben, welche elektrische Leistung Pel sie im Betrieb
vom Elektrizitätswerk beziehen. Wird das Gerät über eine Zeitspanne ∆t verwendet, so beträgt der
Energieverbrauch: ∆E = Pel · ∆t.

Das Elektrizitätwerk rechnet die bezogene elektrische Energie in der Energieeinheit Kilowatt-
stunde kWh ab. Das Rechnen damit ist sehr einfach! Der Normaltarif in der Schweiz beträgt zurzeit
knapp 20 Rappen pro kWh.

Beispiel: Ich lasse den CTouch-Bildschirm (360 W) während einer Lektion (45 min = 3
4 h) einge-

schaltet:

∆E = Pel · ∆t = 360 W ·
3

4
h = 270 Wh = 0.27 kWh

Die Schule muss dem Elektrizitätswerk dafür etwa 5.4 Rappen bezahlen (20 · 0.27 = 5.4).
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