5 Kinematik und Dynamik bei Kreisbewegungen

= Wie spielen die Krafte bei Kreisbewegungen zusammen?

5.1 Das Musterbeispiel: Der VBZ-Bus

Auch die Kreisbewegung veranschaulichen wir uns am Beispiel des VBZ-Busses. Der Bus fahre mit
konstanter Geschwindigkeit durch eine Kurve. Wir sprechen von einer gleichférmigen Kreisbewe-
gung (gfK). Folgende Angaben gelten fiir die Kurvenfahrt des Busses:

e Die Masse des Busses betragt immer noch 26.0t.
e Die Kurve besitze einen Kurven- oder Bahnradius von 63 m.

e Die (Bahn-)Geschwindigkeit des Busses sei konstant und betrage v = 12.5 .

5.2 Die Kinematik der gleichférmigen Kreisbewegung (gfK)

Ein Korper, der gleichmassig eine Kreisbahn abfahrt, beschreibt eine gleichformige Kreisbewegung
(gfK). Seine Geschwindigkeit bezeichnet man in diesem Fall als Bahngeschwindigkeit und es gilt:

Bahngeschwindigkeit bei der gleichformigen Kreisbewegung (gfK)

Beschreibt ein Kérper eine gleichférmige Kreisbewegung mit Bahnradius r
und Umlaufszeit T, so gilt fiir seine Bahngeschwindigkeit v:

2
V= % =1 Kreisumfang pro 1 Umlaufszeit (22)

Wiirde der VBZ-Bus eine Runde in einem Kreisel fahren, so ergabe sich fiir seine Umlaufszeit aus

Gleichung (22):

2nr 2nr 2m-63m
= — T:—:—:32
L v T I2sm ;

Der Geschwindigkeitsbetrag v bleibt bei einer gfK konstant. Zur Geschwindigkeit gehort aber auch
eine Richtung. Sie muss vollstindigerweise als Vektor (= Pfeil) dargestellt werden: V. Bei einer
Kreisbewegung liegt die momentane Bewegungsrichtung v stets auf einer Tangente an die Kreisbahn!

Kreisbahn ™

Aktuelle
Bewegungsrichtung
Zentripetal-
beschleunigung
Zentrum der 4 Korper mit
Kreisbahn “= 777777 Masse m

r \\\'\.,
Bahnradius -

| Tangente an
1 die Kreisbahn
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Der Korper muss nun eine Beschleunigung erfahren, welche fiir die Veranderung der Bewe-
gungsrichtung verantwortlich ist, den Geschwindigkeitsbetrag aber unverdandert ldsst. Diese
Art von Beschleunigung nennt man Zentripetalbeschleunigung dy.

Die Zentripetalbeschleunigung dy,

Beschreibt ein Kérper eine gfK mit der Bahngeschwindigkeit v und dem
Bahnradius r, so muss er unter dem Einfluss einer Zentripetalbeschleuni-
gung dy stehen. Diese steht stets senkrecht zur aktuellen Bewegungsrichtung
V und zeigt ins Zentrum der Kreisbahn. Ihr Betrag ist gegeben durch:

V2

ay = 7 (23)

Anmerkungen zur Zentripetalbeschleunigung

e Gleichung (23) fiir den Betrag von az lasst sich herleiten, indem man sich iiberlegt, wie sich die
Geschwindigkeitsrichtung bei einer Kreisbewegung momentan verandern muss. Bis jetzt steht
uns die Mathematik (Vektorgeometrie, Differentialrechnung) fiir diese Herleitung allerdings
nicht zur Verfiigung, weshalb wir an dieser Stelle darauf verzichten und die Gleichung so
“akzeptieren” wollen.

e Der Vorsatz zentripetal wurde durch Newton gepragt. Er bedeutet soviel wie “nach der Mitte
(des Kreises) strebend” (petere = lat. Verb fiir “streben nach” oder “zielen”).

e Im Beispiel des VBZ-Busses erhalten wir fiir den Zentripetalbeschleunigungsbetrag mit (23):

2o (2smy o

=T Team Ty
Zur nochmaligen Verdeutlichung: Der Bus wird durch diese Zentripetalbeschleunigung weder
schneller, noch langsamer. Sie hilt ihn lediglich auf seiner Kreisbahn!

5.3 Die Dynamik der gleichférmigen Kreisbewegung (gfK)

Das Aktionsprinzip (= 2. Newtonsches Axiom) erkléart uns den Zusammenhang zwischen Kraft und
Bewegung: Die Zusammenfassung aller wirkenden Kréafte zu einer einzigen, resultierenden Kraft Fie
zeigt stets in die Richtung der Beschleunigung a. Fiir die Betrage gilt nach wie vor:

Dies gilt auch fiir Kreisbewegungen! Ein Korper, der eine gfK beschreibt, muss eine resultierende
Kraft Fres erfahren, welche in die Richtung der Zentripetalbeschleunigung dyz, also ins Zentrum der
Kreisbahn zeigt. Fiir den Betrag dieser resultierenden Kraft folgt mit (14) und (23) sofort:

m-v2

Fres=m-az = .

Im Falle einer gfK bezeichnen wir die resultierende Kraft ﬁres neu als Zentripetalkraft ﬁz. Dies ist
lediglich ein neuer Name! Es gibt daran nichts Neues zu verstehen.

Zentripetalkraft F; = Bezeichnung fiir die resultierende Kraft Fre im Falle einer gfK
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Das Aktionsprinzip bei der gleichférmigen Kreisbewegung (gfK)

Ein Kérper beschreibt genau dann eine gfK, wenn die resultierende Kraft
Fres senkrecht zu seiner aktuellen Bewegungsrichtung v steht. In diesem Fall
bezeichnen wir ﬁres als Zentripetalkraft ﬁz.

Bewegt sich ein Kérper der Masse m mit der Bahngeschwindigkeit v auf einer
Kreisbahn mit Radius r, so gilt fiir den Betrag von Fy:

m-v2

Fz =m-dayz = (24)
/Der Korper mit \ /Die auf den Korper wirkende \
Masse m resultierende Kraft ﬁres ist eine
beschreibt eine e Zentripetalkraft Fy, d.h., sie steht
gleichférmige senkrecht zur aktuellen
Kreisbewegung mit Bewegungsrichtung ¥ und betragt:
Bahnradius r und T

(geschwindigkeit v ) \ Fp = v )

Anmerkungen zur Zentripetalkraft

e Die Formel fiir Fz beinhaltet die wesentlichen physikalischen Aussagen:
Um einen Korper auf einer Kreisbahn zu halten, braucht man mehr Kraft, . ..

— je mehr Masse m der Kérper besitzt (Fz ~ m),
— je enger die Kurve, also je kleiner der Bahnradius r ist (Fz ~ %)

— vor allem aber je grésser die Geschwindigkeit v des Korpers ist, denn sie fliesst qua-
dratisch in die Zentripetalkraft ein (Fz ~ v?)!

e Der im Alltag so oft gehorte Begriff Zentrifugal- oder Fliehkraft meint nicht das Gleiche
wie die Zentripetalkraft! Wir kommen im Abschnitt 5.5 darauf zu sprechen.

5.4 Die Kriafte bei der Kurvenfahrt des VBZ-Busses

Ansicht
von oben

Ansicht

von hinten Kraftgleichungen (Analyse)

Vertikale Richtung

Ruhe — Fy=F;

Horizontal, parallel zu v:

gB —— Fy=FrratFL

Horizontal, senkrecht zu v:

oK —  F;=Frua
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Die auf den Bus wirkenden Kréfte lassen sich in den drei Richtungen des Raumes betrachten:

e aufwarts <« abwarts: Der Bus ist in vertikaler Richtung in Ruhe und es ist folgt:

Fn=Fg

e vorwarts & riickwarts: Der Bus fahrt mit konstanter Geschwindigkeit in Vorwartsrichtung.
Laut dem Tragheitsprinzip gilt daher:

Fum = Frron + FL
Der Motor zieht in Vorwartsrichtung, um Rollreibung und Luftwiderstand zu kompensieren.

e rechts < links: Nehmen wir an, der Bus befinde sich in einer Linkskurve. Dann muss er
zwangslaufig aus irgendeinem Grund eine Kraft nach links erfahren, denn als resultierende
Kraft muss eine Zentripetalkraft nach links, also ins Zentrum der Kreisbahn entstehen.

Welche Kraft hilt den Bus in der Kurve? Es ist die seitliche Haftreibung zwischen Pneus
und Strasse. Die Reifen rollen ja nur in Vorwartsrichtung, seitlich haften sie! Es gilt also:

F7 = FR Haft

Verfligt der Bus tatsdchlich liber die bendtigte seitliche Haftung? Berechnen wir dazu einmal die
aktuelle Zentripetalkraft nach Gleichung (24):

2
mo? 26000kg - (12.52)

F, = -
z r 63m

= 64 500N

Die Haftreibungszahl zwischen einer trockenen Strasse und Autopneus betragt z.B. etwa uy = 0.85.
Dann folgt fiir die Haftreibungskraft Fr pare gemass Gleichung (18) auf Seite 28:

N
Fruatt < pn- Fx = pn - Fg = g -m - g = 0.85 - 26000 kg - 9.81 . 217 000N

Die maximal mogliche Haftreibung reicht also bei Weitem, um den Bus in der Kurve zu halten —
schliesslich handelt es sich ja um ein &ffentliches Verkehrsmittel, bei dessen Fahrt es niemals in die
Nahe der physikalischen Grenzen gehen sollte.

Umgekehrt lasst sich nun aber berechnen, wie schnell der Bus denn bei diesen Bedingungen maximal
sein diirfte, um sich gerade noch in der Kurve zu halten:

Fz = FR Haftmax = 217 000N

2
m-v Fz-r 217000N - 63 m m km
Fo=—— = v=y—, _\/ 26000kg PS8

Vielleicht hatten wir eine deutlich grossere maximale Geschwindigkeit erwartet, weil der Unterschied
zwischen aktueller Zentripetal- und maximal moglicher Haftreibungskraft oben so gross war:

FZ =64500N <« 217000N = FR,Haft,rnax
Hier widerspiegelt sich der quadratische Einfluss der Geschwindigkeit v in der Zentripetalkraft-
Gleichung Fz = 5.

Nebenbei: Die Rechnung ist so nicht ganz korrekt, denn die Motorenkraft, die zur Aufrechterhaltung
der Geschwindigkeit bendtigt wird, ist eigentlich auch eine Komponente der Haftreibungskraft. Das
hat zur Folge, dass die maximal mogliche seitliche Haftreibung etwas geringer ist als oben berechnet.
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5.5 Scheinkrifte in beschleunigten Bezugssystemen

Will man das Aktionsprinzip (= 2. Newtonsches Axiom) anwenden, so darf das System, in wel-
chem die Krafte und Bewegungen beschrieben werden, selber nicht beschleunigt sein. Solche nicht-
beschleunigten Bezugssysteme heissen Inertialsysteme.

Dies trifft fiir die Strasse in guter Naherung zu, fiir den Bus hingegen nicht. Deshalb treten
innerhalb des Busses scheinbar Krifte auf, die es von der Strasse aus gesehen gar nicht gibt. Wir
sprechen von Schein- oder Tragheitskraften. Hier seien zwei typische Beispiele ausgefiihrt:

“In den Sitz gedriickt werden”

Beschleunigt der Bus von der Strasse aus gesehen, so hat man innerhalb des Busses den Eindruck eine
Kraft nach hinten zu erfahren. Dies ist eine Scheinkraft! Sie entsteht, weil unsere Kérper aufgrund
ihrer Masse trage sind und von sich aus in Ruhe bleiben wiirden. Der Innenraum des Busses ist
hingegen kein Inertialsystem. Er beschleunigt vorwarts. So entsteht fiir die Menschen im Bus der
Eindruck einer nach hinten wirkenden Kraft, gegen die sie sich stemmen miissen.

Die Zentrifugal- oder Fliehkraft

Macht der Bus eine Linkskurve, so wiirde sich unser Kérper im Bus aufgrund seiner Tragheit aus
Sicht der Strasse weiter geradeaus bewegen. Der Bus beschleunigt aber (zentripetal) nach links, und
so entsteht innerhalb des Busses der subjektive Eindruck, eine Kraft nach rechts resp. in der Kurve
“nach aussen” zu erfahren. Genau diese Kraft — die es aus der Sicht der Strasse gar nicht gibt — wird
Zentrifugal- oder Fliehkraft genannt. Es ist eine Kraft, die nur innerhalb das Busses “existiert” —
eben eine Scheinkraft.

5.6 Kraftangaben als Vielfache des Ortsfaktors

Grundséatzlich |asst sich jede beliebige auf einen Kérper wirkende Kraft F als Vielfaches der Ge-
wichtskraft Fg ausdriicken, welche der Korper an der Erdoberflache erfahrt:

F

= “Wie oft steckt Fg in F drin?”
G

F=x-Fg resp. «x
Ist zB. x =15, also F =5 Fg oder F—'Z = 5, so sagt man, auf den K&rper wirken 5g. Man gibt den
Vergleich also in Vielfachen des Ortsfaktors g an der Erdoberflache an.
Solche vergleichenden Angaben haben sich besonders fiir Situationen mit starken Beschleuni-
gungen eingebiirgert, wie die folgenden Beispiele zeigen sollen.

Beschleunigung im Formel-1-Auto

Die Beschleunigung eines Formel-1-Autos betragt von 0 auf 100 kTm knapp a = 17 S%

Der Fahrer (z.B. 72kg) erfahrt diese Beschleunigung, weil seine Riickenlehne ihn mit der entspre-
chenden Normalkraft nach vorne schiebt. Aus einer Krafteskizze wird klar, dass diese Normalkraft
der Riickenlehne gerade gleich der resultierenden Kraft sein muss. Mit dem Aktionsprinzip (14) folgt:

Fx = Frs=m-a=T2kg- 172 = 1224N
S

Fiir den Vergleich mit Fg ist es aber gar nicht notwendig, den Wert der Normalkraft zu kennen. Das
gesuchte Vielfache ergibt sich direkt aus dem Vergleich von Beschleunigungswert und Ortsfaktor:

N Frs m-a _a 175

= = = = - = S _=1.73

Fn=x-Fg = «x

Der Fahrer wird beim Start also etwa mit 1.7 g in den Sessel gedriickt resp. von diesem beschleunigt.
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Beschleunigungen beim Wascheschleudern

Wie stark wird die Wasche beim Schleudern gegen die Trommelwand gedriickt?

Voriiberlegungen: Beim Schleudern drehe sich die Waschetrommel mit 600 Umdrehungen pro
Minute. Dann dauert die einzelne Umdrehung T = 0.100s.

Die Trommel besitze einen Radius von r = 24.0 cm. Aus (22) folgt fiir die Bahngeschwindigkeit:

2nr 2m-0.240m m
=—=—=1571 —
'S T 701005 s
Fiir die Zentripetalbeschleunigung erhalten wir aus (23):
2
2 15.08 &
azzv—zu=947.52
r 0.240m s2

Kraftesituation: Wir betrachten einen Wascheklumpen in drei Momenten der Drehung:

Folgerungen: In jedem der drei Momente erfdhrt der Wascheklumpen total die gleich grosse Zen-
tripetalkraft Fz (= resultierende Kraft) in Richtung Trommelmitte, denn es handelt sich ja
um eine gfK mit fixem Radius und fixer Geschwindigkeit.

Allerdings setzt sich Fz in den drei Momenten unterschiedlich zusammen. Daraus schliessen
wir auf unterschiedliche Normalkrafte, welche die Wasche erfahrt. Diese lassen sich jeweils in
Vielfachen des Ortsfaktors angeben:

e Situation 1: Die Normalkraft muss zusatzlich die Gewichtskraft kompensieren:

FZ:FN,I_FG = FNJ:F2+FG

F F,+F car +m- 9475 %
= =l T2776 MmTRE T o "% _9659+1=97.6
FG FG m- g g 9815_2

Die Wasche wird mit 97.6 g gegen die Wand gedriickt!

e Situation 2: Die Normalkraft ist gerade gleich der Zentripetalkraft, denn die Gewichts-
kraft wird durch die Reibungskraft kompensiert. Es folgt:

Fno ay 947153
Fno=Fz = =—= === =96.59 = 96.6

N2 =z PTFs T g o8l

Die Wasche wird neu mit 96.6 g gegen die Wand gedriickt!
e Situation 3: Normalkraft und Gewichtskraft erzeugen gemeinsam die Zentripetalkraft:

F
FZ:FN,3+FG = FN’3=Fz—FG = X3=%=96.59—1 =956
G

Die Wasche wird “nur noch” mit 95.6 g gegen die Wand gedriickt!
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5.7 Das Newton’sche Gravitationsgesetz

Das Newtonsche Gravitationsgesetz

Als Gravitation (oder Schwer-/Gewichtskraft) Fg bezeichnen wir die anziehen-
de Kraft, welche zwei Kérper aufgrund ihrer Massen aufeinander ausiiben.

Fiir zwei Punktmassen my und my im Abstand r gilt fiir den Betrag dieser
anziehenden Kraft das sogenannte (Newton’sche) Gravitationsgesetz:

mip-mp

Fg=G (25)

72

Dabei bezeichnet G die universelle Graviationskonstante. Universell bedeutet:
G hat im ganzen Universum den gleichen Wert, nimlich:

1N'1’I12

kg2

G=6.674-10"

Anmerkungen zum Gravitationsgesetz

e Im Gravitationsgesetz werden sogenannte Punktmassen in die Rechnung eingesetzt. Damit
ist ein theoretisches Konstrukt gemeint. Man lasst die Massen der sich anziehenden Korper
auf Punkte zusammenschrumpfen, um einen sinnvollen Abstand zwischen ihnen zu definieren.

Bei iiberall gleich dichten Kugeln sitzt die Punktmasse genau im Mittelpunkt. Das gilt in
guter Naherung fiir Metallkugeln, aber eben auch fiir Sterne, Planeten und Monde. Um anders
geformte Korper brauchen wir uns kaum Gedanken zu machen, denn die Gravitation ist eine
so schwache Kraft, dass sie nur bei riesigen Massen wirklich spiirbar und relevant wird.

e Die Gravitation ist proportional zu beiden beteiligten Massen.

e Entscheidend am Gravitationsgesetz (25) ist das Abstandsquadrat 7> im Nenner: Die Gravita-
tion nimmt mit zunehmendem Abstand r relativ rasch ab, weist aber trotzdem eine unendliche
Reichweite auf. Das folgende Diagramm zeigt dieses quadratische Abfallverhalten graphisch
und illustriert zudem, wie klein die Gravitation in Alltagssituationen ist.

Gravitation Fq zwischen zwei
0.9 Schnellzuglokomotiven von je 80t Masse.
0.8 Angabe in Millinewton mN!

Abstand 7 der Lokomotiven.
Angabe in Metern m.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Die beiden Schnellzuglokomotiven mit doch ansehnlichen 80 Tonnen Masse ziehen sich mit
gerademal einem knappen halben Millinewton an, wenn ihre Schwerpunkte einen Abstand von
30 Metern aufweisen — und naher kénnen sie sich auf demselben Gleis kaum kommen! In 60
Metern Entfernung betrdgt die Kraft nur noch ein Viertel. So funktioniert ein quadratisches
Abfallverhalten: Bei Verdoppelung der Distanz viertelt sich der Wert, denn 22 = 4.
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5.8 Kreisbhahnen von Himmelskorpern

Aus der Newtonschen Mechanik folgt, dass sich leichtere Himmelskorper auf elliptischen Bahnen
um viel massigere Zentralkdrper bewegen. Dies gilt also z.B. fiir Satelliten/Monde um Planeten
oder Planeten/Kometen um Sonnen (Sterne).

Komet

Kleine Halbachse b Breanpuakis

Grosse Halbachse a

Brennpunkt A
(Sonne)

Es ist mathematisch recht anspruchsvoll, die Newtonsche Mechanik allgemein fiir ellipitsche Bahnen
zu beschreiben. Viele Satelliten, Monde und Planeten — nicht hingegen Kometen — bewegen sich
allerdings auf nahezu kreisformigen Bahnen um den Zentralkdrper (Kreis = Spezialfall einer Ellipse
mit gleich grossen Halbachsen). Deshalb lassen sich deren Umlaufbewegungen bereits mit den uns
bekannten Gleichungen zur gfK gut beschreiben.

Die “Himmelsgleichung” = Gleichung fiir Massen, die gravitativ um einen viel massigeren
Zentralkorper kreisen

Himmelskorper bewegen sich alleine im nahezu perfekten Vakuum des Weltraums. Sie erfahren des-
halb keinerlei Reibungs- oder Kontaktkréfte. D.h., die einzige auf einen Himmelskdrper wirkende
Kraft ist die Gravitation in Richtung des Zentralkorpers. Hier das Beispiel der um die Sonne krei-
senden Erde:

Diese alleinige Kraft ﬁG muss laut Newton gleich der resultierenden Kraft ﬁres, und das bedeutet im
Falle einer Kreisbewegung eben gleich der Zentripetalkraft Fy sein. Wir folgern:

“Himmelsgleichung” (Masse kreist um Zentralkorper): Fz=Fg (26)

Durch Gleichsetzen der Kraftbetrage folgt aus (24) und (25):

2
. M- .
m-v =G- m:FG = V2: (27)

F7; =
r r2 r

Dabei schreibt man fiir die Masse des Zentralkdrpers gerne ein grosses M und fiir jene des kreisenden
Korpers ein kleines m.

Wie wir sehen, kiirzt sich bei gravitativen Kreisbewegungen um Zentralkorper die Masse m
des kreisenden Korpers weg. Das ist immer so. Fiir die Umlaufszeiten oder Geschwindigkeiten von
Satelliten ist die Satellitenmasse also stets bedeutungslos.
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Bahnradius und Umlaufszeit

Ist alleine die Gravitation fiir eine kreisformige Umlaufbahn verantwortlich, so gehdrt zu jedem
Bahnradius r eine ganz bestimmte Umlaufszeit T. Die mathematische Beziehung ergibt sich direkt
aus Gleichung (27), wenn auf der linken Seite die Gleichung (22) fiir die Bahngeschwindigkeit v bei
einer gfK eingesetzt wird:

,» G-M | 2nr
a— y=—
r T
ar’rr G-M
& = — | @n*r?)
] G'M -1
< T2~ 423 G-
4n?p3
= T? = N
G-M |
423
= T =
G-M

Soll ein Satellit auf einer bestimmten Héhe ausgesetzt werden, so ist dadurch also bereits vorgegeben,
wie lange seine Umlaufzeit zu dauern hat. Das gilt z.B. auch fiir das Space Shuttle. Arbeitet es mit
abgestelltem Antrieb auf einer Hohe von 450km iiber der Erdoberflache, so ergibt sich fiir die Dauer
einer Erdumrundung:®

e \/4ﬂ2r3 ~ 472 - (6820 000 m)>
G-M 6.674 - 10-11 %rf 597 -10% kg

= 5607s = 93 min

Geostationidre Satelliten

Umgekehrt kann man nun fragen, auf welcher Hohe ein Satellit positioniert werden muss, wenn man
eine bestimmte Umlaufszeit vorgeben mochte. Aus obiger Gleichung ergibt sich:

4ﬂ2r2_G-M | r-T?
2 47
G-M-T?
3 _
=4 r —4—7[2 |</

3|G-M-T?
= r=N——
472

Speziell niitzlich fiir die Wetterbeobachtung sind geostationdre Satelliten. Diese stehen stets iiber
demselben Ort auf dem Aquator. Dies ist moglich, weil ihre FlughShe so gross ist, dass die Umlaufszeit
gerade einen Tag betrigt. Berechnen wir den zugehdrigen Bahnradius:’

~11 N-m2 24 2
o7 5[6.674- 10711 N5 07102 kg - (864005)
r= 3G :\/ ke = 42210 m = 42200 km
472 4

Fiir die Hohe iiber Erdboden folgt: & = r — R = 42200km — 6370km = 35800km. Geostationare
Satelliten sind im Vergleich zu anderen Satelliten sehr weit von der Erde entfernt!

5Erdradius R = 6370km = Bahnradius r = 6370 km + 450 km = 6820 km, Erdmasse M = 5.97 - 10** kg
T = 1 Tag = 24 -3600s = 86400 s
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6 Arbeit, Energie und Leistung

= Energetische Betrachtungen — allgemein und speziell fiir die Mechanik

6.1 Arbeit, Energie und Leistung beim VBZ-Bus

Die Kapitel 3 und 4 liefern samtliche Daten, um zur Fahrt des Busses nun auch energetische Be-
trachtungen anzustellen. Diese werden hier als Beispiele dienen.

6.2 Die Definition der Arbeit W: “Arbeit ist Kraft mal Weg”

Vorgange resp. Abldufe sind in der Regel mit einem Arbeitsaufwand verbunden. Die Physik mochte
den fiir einen Vorgang benotigten Arbeitsaufwand als Zahl mit Einheit angeben kdnnen. Dazu defi-
niert sie die Arbeit — resp. gedacht eben: den Aufwand fiir eine Arbeit — wie folgt:

Die Definition der Arbeit W (= Goldene Regel der Mechanik)

Auf einen Kérper wirke eine konstante Kraft F. Wird der Kérper um die
Strecke s in die Richtung von F bewegt (egal wie und warum), so wird
aufgrund dieser Kraft die Arbeit W am Kérper verrichtet. Diese ist definiert
durch:

W=F-s (28)

“Arbeit = Kraft mal Weg.”

Anmerkungen zur Arbeitsdefinition

e Das Symbol W hat seinen Ursprung im englischen Wort work.

e Idee der Arbeitsdefinition: Bei (mechanischen) Vorgéngen geht es um die Verschiebung
von Objekten. Zwei Faktoren machen eine solche Verschiebung aufwindig:
i. Es muss mehr Arbeit verrichtet werden, wenn die dafiir benétigte Kraft gross ist — F.
ii. Je weiter die Verschiebung geht, desto mehr Arbeit muss verrichtet werden — s.

Die Kombination beider Aspekte lautet: “Arbeit ist Kraft mal Weg." Diese Aussage bezeichnet
man auch als die Goldene Regel der Mechanik.

e Die Verschiebung des Korpers um die Strecke s muss in Richtung der Kraft F erfolgen.
Nur genau dann gilt die Arbeitsdefinition in dieser Form.

e Der Kraftbetrag F muss iiber die Strecke hinweg konstant sein (oder es muss sich um
einen Mittelwert handeln), damit man sie in diese Definition einsetzen darf. Was sollte
man denn sonst fiir den Wert von F einsetzen?

e Die Arbeit W erhilt eine eigene SI-Grundeinheit, das Joule J. Aus der Arbeitsdefinition folgt
fir die Zusammensetzung des Joules aus SI-Grundeinheiten:

kg - m?
2

[W]l=[F]-[s]=N-m-= =:Joule =J

S
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Beispielrechnungen und -iiberlegungen am VBZ-Bus

Ungerundete Bewegungs- und Kraftdaten aus den Kapiteln 3 und 4:

Allgemein: Busmasse: m = 26000kg
Normalkraft: Fn=Fg=m-g=255060N
Rollreibungszahl: ur = 0.0075

Rollreibungskraft: Fr=ur-Fn=1913N

1. Bewegungsabschnitt: Resultierende Kraft: Fies) =m-a; =46429N (al = 1.786 Ez)
S

Motorenkraft: Fymi = Fresg + Fr = 48342N

2. Bewegungsabschnitt: Motorenkraft: Fma = Fr =1913N

3. Bewegungsabschnitt: Resultierende Kraft:  Fres3 = m-az = 65000N ((—)2.5 92)
S

Bremskraft: FBrems3 = Fres3 — Fr = 63087 N

e Die Reibungskraft wirkt stets entgegen der Bewegungsrichtung des Busses. Das bedeutet, dass
der Bus aufgrund dieser Kraft selber Arbeit abgeben muss. Wir sprechen von Reibungsarbeit
WR. Diese l3sst sich leicht berechnen, insgesamt und auf den drei Teilstrecken:

1. Bewegungsabschnitt: Wgr | = Fr-s1 = 1913N-43.75m = 83694] = 84kJ
2. Bewegungsabschnitt: Wry = Fr-sp = 1913N - 125m = 239 125] = 240kJ
3. Bewegungsabschnitt: Wr3 = Fr-s3 = 1913N-31.25m =59781J = 60kJ
Gesamtreibungsarbeit: WRtotal = WR1 + Wr2 + Wr3 =382600] = 380KkJ

e Solange der Buschauffeur aufs Gaspedal driickt, verrichtet der Motor Arbeit am Bus, denn die
Motorenkraft zieht in Bewegungsrichtung — Wy:

2. Bewegungsabschnitt: Auf diesem Bewegungsabschnitt verrichtet der Motor am Bus ins-
gesamt die Arbeit, die dieser in Form von Reibungsarbeit wieder abgibt:

Witz = Wi = 239125 = 240k]

1. Bewegungsabschnitt: Der Motor muss einerseits den Bus beschleunigen und andererseits
die Reibung kompensieren. Unter Verwendung der Arbeitsdefinition werden Beschleuni-
gungsarbeit Wi ; und Kompensation der Reibungsarbeit Wr | gut erkennbar:

Wmi = Fwmi - S1 = (Fres,1 + FR) © 81 = Fres1 - 51+ Fr - 51
~—— SN——
=WB'] :WR,I
=2031.3kJ +83.7k] =2115k]J = 2.1MJ

Das Anfahren ist deutlich aufwandiger als die gleichformige Fortsetzung der Fahrt.

e Wihrend dem Abbremsen (3. Bewegungsabschnitt) gibt der Bus nur noch Arbeit ab. Dies ge-
schieht aufgrund zweier Krafte. Einerseits wirkt immer noch die Rollreibung. Andererseits gibt
es eine zusitzliche Haftreibung zwischen Pneus und Strasse, welche von der Verlangsamung
der Rader aufgrund der Bremsen herriihrt. Fiir diese abgegebene Bremsarbeit Wgiems 3 gilt:

Warems.3 = FBrems;3 * §3 = 63.087kN - 31.25m = 1972kJ = 2.0M]
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6.3 “Der Arbeitsbetrag ist prozessunabhangig!”

Die an einem Korper verrichtete Arbeit verandert automatisch dessen Zustand.

Was damit gemeint ist, verstehen wir besser am konkreten Beispiel: Die Beschleunigungsarbeit
im 1. Bewegungsabschnitt bringt den VBZ-Bus von Geschwindigkeit 0 (= erster Bewegungszustand)
auf 12.5 % (= zweiter Bewegungszustand).

Fiir die Beschleunigungsarbeit Wy darf es allerdings nicht darauf ankommen, wie diese Beschleu-
nigung ablduft. Wenn wir alle Storeffekte, insbesondere alle Arten von Reibung, ausblenden, sollte
fiir das Erreichen der Endgeschwindigkeit stets derselbe Aufwand, also der gleiche Arbeitsbetrag
benotigt werden. Das ist eine wesentliche Anforderung an eine sinnvolle Arbeitsdefinition!

Beim VBZ-Bus darf es also keine Rolle spielen, mit welcher Beschleunigung er seine Endgeschwin-
digkeit von 12.5 % erreicht, die Beschleunigungsarbeit Wp muss stets denselben Wert aufweisen.

Tatséchlich geniigt die Arbeitsdefinition W = F - s dieser Anforderung, was am Beispiel des VBZ-
Busses auch ganz plausibel wird: Entweder beschleunigt der Bus mit grosser Kraft F, also auch mit
grosser Beschleunigung, dann braucht er aber nur eine kurze Beschleunigungsstrecke s. Oder der
Bus beschleunigt langsam, also mit geringer Kraft F', was aber eine langere Beschleunigungsstrecke
s zur Folge hat.

Dass unsere Arbeitsdefinition vom tatsidchlichen Prozessablauf unabhingige Arbeitsbetrige lie-
fert, ist enorm wichtig, denn dies wird es uns ermoglichen Energie als das in einem Zustand gespei-
cherte Arbeitsvermégen zu definieren (vgl. Abschnitt 6.5). Dieser enorm fruchtbare und weitreichende
Gedanke ist wohl der eigentlich Grund, weshalb die Arbeitsdefinition (28) als Goldene Regel der
Mechanik bezeichnet wird.

6.4 Exkurs: Kraftwandler

Wie eben im Abschnitt 6.3 erldutert, ist der Arbeitsaufwand fiir eine bestimmte Zustandsdnderung
unabhingig vom Prozess, mit dem diese Zustandsanderung erreicht wird. Das bedeutet aber, dass
es fiir uns "beim Arbeiten” resp. bei der Konstruktion von Maschinen gewisse Freiheiten gibt. Ganz
explizit ausgedeutscht: Wir konnen selber entscheiden, mit wie viel Kraft F ein Prozess verrichtet
wird, solange es uns gleich ist, welche Wegstrecke s dafiir zuriickgelegt werden muss. Die fiir den
Prozess bendtigte Arbeit W = F - s bleibt dadurch unverandert!

Technische Hilfsmittel erlauben uns also die fiir einen Vorgang bendtigte Kraft selber einzustellen.
Solche Hilfsmittel nennen wir Kraftwandler. Hier ein paar ganz typische Beispiele (Bilder dazu finden
sich auf der nichsten Seite):

Normaler Flaschenzug: Ein Gewicht wird am selben Seil n-fach aufgehingt. Dadurch reduziert
sich die Zugkraft im Seil um den Faktor n: Fz = F—nG Gleichzeitig ist die Seilstrecke s, die
man aus dem Flaschenzug herausziehen muss, um das Gewicht um eine bestimmte Hohe h
anzuheben, n-mal so gross: s = n - h! Es gilt also fiir das Anheben des Gewichts:

F
Arbeit mit Flaschenzug = Fz - s = S onh= FG - h = Arbeit mit nur einem Seil
n
Hebel: Hebel sind wohl die klassischsten Kraftwandler: eine kleine Kraft | kann iiber einen langeren
Hebelarm r; (= Abstand zur Drehachse) in eine grossere Kraft F, bei kiirzerem Hebelarm
ry umgewandelt werden. Es gilt das sogenannte Hebelgesetz, das in direkter Verwandtschaft
mit unserer Arbeitsdefinition steht:

Hebelgesetz: Fi-n=Fn

Nach diesem Prinzip arbeiten z.B. Zangen, Nussknacker, Brecheisen, Schraubenschliissel,
Tirfallen, etc. Wenn man bedenkt, wo das Hebelprinzip iiberall zur Anwendung kommt, ware
eine Welt ohne Hebel fiir uns vermutlich wesentlich miihsamer. . .
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Zahnrdder /Getriebe: Bei der Ubersetzung von einem kleineren auf ein grésseres Zahnrad gewinnt
der Mechanismus an Kraft. Allerdings muss sich das kleinere Zahnrad schneller drehen als das
grosse. Umgekehrt l3sst sich so auf Kosten der Kraft eine grosse Geschwindigkeit erzeugen.

Zahnrader spielen in Getrieben eine grosse Rolle. Z.B. entwickeln Verbrennungsmotoren in Au-
tos bei bestimmten Drehzahlen besonders viel Kraft. Dann sollte man darauf achten, dass das
Auto normalerweise mit dieser Drehzahl fahrt und das Zahnradgetriebe hinter dem Motor die
entsprechende Ubersetzung auf die gewiinschte Fahrtgeschwindigkeit bewerkstelligen lassen.

Natiirlich gilt Analoges beim Fahrradfahren: Es ist nicht mdglich mit beliebig viel Kraft in die
Pedale zu treten. Daher schalten wir einen Gang runter, wenn es bergauf geht. ..

Rampe: Das Hochziehen eines Gewichts iiber eine Rampe verringert die Zugkraft Fz. Die Ge-
wichtskraft Fg, die Sie beim gleichférmigen vertikalen Hochziehen des Gewichts kompensieren
missten, wird auf die Parallelkomponente F) = Fg - sine reduziert. Hingegen ist der Weg
iiber die Rampe langer: s = </, sodass immer noch der gleiche Arbeitsaufwand anfllt:

sina’

sSma

Zugarbeit iiber Rampe = Fz-s=Fg)-s= Fg-sina - =Fg-h

Hydraulische Hebebiihnen: In hydraulischen Hebevorrichtungen iibernimmt der Druck in der Fliissig-
keit die Rolle eines Kraftwandlers. Wie das genau geht, erfahren wir im Kapitel 7.

Vorrats-
behilter

L=
Ventil 2 |

AuslaBhahn
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6.5 “Energie ist gespeichertes Arbeitsvermogen”

Die an einem Korper verrichtete Arbeit W geht nicht einfach verloren. Sie ist im Zustand des Kérpers
gespeichert und unter Umstdnden wieder abrufbar. Eine solche gespeicherte Arbeit bezeichnen wir
als Energie:

Die physikalische Definition der Energie E

Die Energie eines Zustandes ist das in diesem Zustand gespeicherte Arbeits-
vermégen. Dabei ist der Ausdruck “gespeichert” im doppelten Sinn zu verstehen:

1. Bezogen auf die Vergangenheit:
Es war Arbeit nétig, um diesen Zustand zu erreichen.

2. Bezogen auf die Zukunft:

Die im Zustand vorhandene Energie kann als Arbeit abgegeben werden.

Energie ist gespeichertes Arbeitsvermdgen. Darin stecken sowohl Nutzen, als auch Gefahr. Den
energiereichen Zustand eines Systems erkennen wir genau daran, dass er eben niitzlich, aber genauso
gefahrlich sein kann. Denke z.B. an einen Kanister Brennsprit, an einen Stausee, oder an eine
Steckdose. Gefahr und Nutzen gehen Hand in Hand!

Beispieliiberlegung am VBZ-Bus

Die im 1. Bewegungsabschnitt am Bus verrichtete Beschleunigungsarbeit Wg | speichert der Bus in
Form von kinetischer Energie Ey;,» (= Bewegungsenergie). Diese Energie bleibt im 2. Bewegungs-
abschnitt erhalten, da sich der Bus gleichformig bewegt. Im letzten Abschnitt der Fahrt gibt der Bus
diese Energie wieder ab, und zwar in Form von Reibungs- und Bremsarbeit Wr 3 und Wgiems 3. Man
bemerke also (vgl. Werte auf Seite 47):

Ekin,Z = WBJ = WBrems,3 + WR’3 in Zahlenwerten: 2031.3kJ ~ 1972kJ + 59.8k]J

6.6 Hubarbeit Wy, und potentielle Energie E,

Beim Anheben eines Korpers wird Hubarbeit Wy, an ihm verrichtet. Diese Arbeit erfolgt gegen
die Gewichtskraft Fg. Die Hohendifferenz h entspricht der zuriickgelegten Strecke. Aus der Arbeits-
definition (28) und der Gleichung (17) fiir die Gewichtskraft folgt:

WHubIFG'th'g'h

Hubarbeit speichert der Kérper in Form von Héhenenergie, die auch als Energie der Lage oder
potentielle Energie E},, bezeichnet wird.

Berechnung einer potentiellen Energie E)

Befindet sich ein Kérper der Masse m auf der Héhe h iiber einem vorher definierten
Nullniveau (NN), so besitzt er bezogen auf dieses Nullniveau eine potentielle Energie
Epor von:

Epr=m-g-h (29)

Die potentielle Energie ist die gespeicherte Hubarbeit Wy, die bendtigt wurde, um
den Kérper vom Nullniveau auf die Héhe h anzuheben.
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Anmerkungen zur Hubarbeit Wy, und zur potentiellen Energie E

e Bei der Angabe einer potentiellen Energie muss zwingend ein Nullniveau (NN) angegeben
werden. Ansonsten weiss man gar nicht, worauf sich die Energieangabe bezieht. Ohne Dekla-
ration des Nullniveaus bleibt die Angabe einer potentiellen Energie bedeutungslos. Haufig legt
aber bereits die Situation ein “natiirliches” Nullniveau fest.

Z.B. ist das Nullniveau der potentiellen Energie bei einem Wasserkraftwerk in den Bergen
sinnvollerweise gegeben durch die Hohenlage der Turbinen.

e 1 Newton, also die SI-Einheit der Kraft, entspricht gerade etwa der Gewichtskraft einer Tafel
Schokolade (vgl. Seite 27). Auch beim Joule, also bei der SI-Einheit von Arbeit und Energie,
gibt es das einfache “Schokoladentafel-Beispiel” zur Verdeutlichung.

Das Anheben einer Schokoladentafel (m ~ 100 g) um einen Meter benétigt eine Hubarbeit von
gerade etwa 1 Joule:

N
WHub:m-g-h:O.lkg~9.81@~1m=0.981Jz1J

6.7 Beschleunigungsarbeit Wy und kinetische Energie Ey;,

Beim der Beschleunigung eines Kérpers wird Beschleunigungsarbeit Wy an ihm verrichtet. Diese
Arbeit ist gekoppelt an die fiir die Beschleunigung bendtigte resultierende Kraft Fi.s. Die in der
Arbeitsdefintion auftretende Strecke ist die Strecke s, iiber welche hinweg das schneller Werden
stattfindet.

Zur Herleitung der Beschleunigungsarbeit Wy betrachten wir eine gleichmassig beschleunigte Be-
wegung ohne Anfangsgeschwindigkeit (gmbBoA). Aus der Arbeitsdefinition (28), dem Aktionsprinzip
(14) und der Bewegungsgleichung (8) von Seite 19 folgt:

v om-v?
Wg=Frs:-S=m-a-s=m-a-— =
2a 2

Beschleunigungsarbeit speichert der Korper in Form von Bewegungsenergie, die auch als kinetische
Energie Ey;, bezeichnet wird.

Berechnung einer kinetischen Energie Ey;,

Besitzt ein Kérper der Masse m die Geschwindigkeit v, so tragt er eine kinetische
Energie Ey;, von:
m-v?
2
Die kinetische Energie ist die gespeicherte Beschleunigungsarbeit Wy, die benétigt

wurde, um den Kérper aus dem Stand auf die Geschwindigkeit v zu bringen.

Eyin =

(30)

Am Beispiel des VBZ-Busses sei gezeigt, wie sich die Beschleunigungsarbeit resp. die kinetische
Energie in einem konrekten Fall berechnen ldsst. Die im 1. Bewegungsabschnitt verrichtete Be-
schleunigungsarbeit Wg | bleibt als kinetische Energie Eyi,2 wahrend dem 2. Abschnitt gespeichert:

2
m-?  26000kg - (12.52)
2 2
Denselben Wert haben wir bereits auf Seite 47 erhalten (2031.3kJ). Die kleine Abweichung ist auf
die Rundung des dort verwendeten Betrags fiir die resultierende Kraft zuriickzufiihren.

Exinp = Wg1 = =2031000J =2031kJ
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6.8 Weitere Energieformen

Neben potentieller und kinetischer Energie gibt es zahlreiche weitere Energieformen. D.h., es be-
stehen diverse weitere Moglichkeiten, wie im Zustand eines Korpers oder eines Systems von Korpern
Arbeit gespeichert sein kann. Hier eine Auswabhl:

e Rotationsenergie E,

Dreht sich ein Korper um eine Achse, so ist auch in dieser Art der Bewegung Energie enthalten.
Es handelt sich um eine spezielle Form der kinetischen Energie.

Ein typisches Beispiel sind Schwungrader in Motoren und Schleifmaschinen. Die in der Dreh-
bewegung enthaltene Energie wird bei Bedarf dazu eingesetzt, die Drehbewegung aufrecht zu
erhalten. Das Schwungrad sorgt so fiir ein gleichmassiges Drehen. Auch in der Kreisbewegung
von Planeten um die Sonne ist Rotationsenergie enthalten.

e Elastische Energie Ey

Dehnbare Gegenstdnde, z.B. eine Spiralfeder, enthalten in ihrem angespannten Zustand ela-
stische Energie. Man sagt auch Federenergie (daher das F im Index).

Ein gespannter Pfeilbogen ist ein schones Beispiel fiir elastische Energie.

Epot, Exin, Eror und Er werden auch als mechanische Energieformen bezeichnet.

e Innere Energie Ej,

Alle Stoffe kdnnen Energie in sich aufnehmen. Sinngema3ss sagen wir dieser Energieform innere
Energie. Wir bemerken sie vor allem anhand der Temperatur eines Korpers. (Diese innere
Energie ist librigens nichts anderes als die kinetische und die potentielle Energie der Atomen
oder Molekiilen, aus denen sich der Korper zusammensetzt.)

Niemand wird die Gefahren bestreiten, die in einer heissen Herdplatte oder in siedendem Wasser
stecken.

e Elektrische Energie Eq

Unter elektrischen Ladungen herrschen anziehende und abstossende Krifte. Wie bei der po-
tentiellen Energie, die auf der Anziehung von Massen beruht, gibt es eine elektrische Energie,
die je nach gegenseitiger Lage der Ladungen grdsser oder kleiner ist. Aufgrund von elektrischer
Energie bewegen sich Ladungen, wird also Strom hervorgerufen.

Wir verwenden diese elektrische Energie, wenn wir ein Gerdt an die Steckdose anschliessen.
Dem Elektrizitdtswerk bezahlen wir die gelieferte Menge an elektrischer Energie. Der Blitz ist
das Paradebeispiel fiir das Freiwerden von elektrischer Energie. Der Zustand vor der Entladung
der aufgeladenen Wolken ist offensichtlich sehr gefédhrlich.

e Strahlungsenergie Eg

Licht und andere Sorten von Strahlung tragen Energie. Dies merken Sie z.B. an einem schonen
Tag. Trotz geschlossener Augen nehmen Sie die Richtung wahr, aus welcher die Strahlung
kommt. Beim Auftreffen auf Ihre Haut wird ein Teil der Strahlungsenergie in innere Energie
umgewandelt. Sie spiiren eine Erwdrmung. Die Strahlungsenergie der Sonne méchten wir in
Zukunft technisch besser ausnutzen, da sie uns gratis zur Verfiigung steht (— Fotovoltaik
(Solarzellen), Sonnenkollektoren, Solarkraftwerke).

Sehr energiereiche Strahlung ist fiir uns Menschen gefahrlich. Denken Sie z.B. an ultraviolette
Strahlung (UV = Sonnenbrand), an Rontgenstrahlung oder auch an radioaktive Strahlung
(hohe Dosen = Krebs oder sogar direkte Verbrennungen).
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e Chemische Energie E pem

Viele chemische Reaktionen laufen spontan ab, weil dabei chemische Energie freigesetzt wird.
D.h., die an der Reaktion beteiligten Atome besitzen vor der Reaktion mehr Energie als nach-
her. Diese iiberzahlige Energie wird bei der Reaktion frei. Man nennt sie auch Bindungsenergie.
Mochte man die entstandene Verbindung wieder auftrennen, so muss man ihr die Bindungs-
energie wieder zufiihren.

Typische Beispiele fiir die Freisetzung von chemischer Energie sind Verbrennungsvorginge
(Verbindung mit Sauerstoffatomen). Z.B. verbrennen wir Heizdl zur Beschaffung von Warme
(innere Energie) oder Benzin in einem Motor, damit ein Auto fahrt, also mit kinetischer Energie
versorgt wird.Ganz offensichtlich werden die mit der chemischen Energie verbundenen Gefahren
bei sehr heftigen Reaktionen wie beispielsweise Explosionen von Treibstoffen.

6.9 Der Energieerhaltungssatz — allgemein und speziell fiir die Mechanik

Die Gleichungen (29) und (30) zeigen, wie sich potentielle und kinetische Energien in einer konkreten
Situation berechnen lassen. Im Prinzip kann man zu allen Energieformen eine solche Berechnungs-
gleichung aufstellen.

Die Gesamtenergie E, eines Systems ldsst sich somit in jedem beliebigen Zustand genau
bestimmen. Sie ist die Summe iiber alle im System vorkommenden einzelnen Energieformen:

E: = Summe iiber alle vorhandenen Energieformen

Wichtig dabei ist die genaue Abgrenzung des Systems: Welche Korper gehéren zum betrachteten
System und welche nicht? Erst wenn das klar ist, kann man die im System auftretenden Energieformen
studieren.

Ist das System so beschaffen, dass es mit Korpern ausserhalb des Systems keine Energie aus-
tauscht, so bezeichnen wir es als abgeschlossenes System. D.h., wenn am System keine Arbeit
verrichtet wird und das System selber auch keine Arbeit abgibt, so ist es abgeschlossen.

Der allgemeine Energieerhaltungssatz (Mayer, Joule, Helmholtz)

In einem abgeschlossenen System bleibt die Gesamtenergie erhalten:
E« = konstant

Alternative Formulierung: Die Summe (iber die Energien aller an einem Vor-
gang beteiligten Kérper (= beziiglich diesem Vorgang abgeschlossenes System)
bleibt konstant. Egal, welcher Vorgang abliuft, die Gesamtenergie bleibt da-
durch unverdndert! Sie hat vor, wihrend und nach dem Vorgang den genau
gleichen Wert.

Energie kann weder erzeugt, noch vernichtet, sondern lediglich von einer Ener-
gieform in eine andere Energieform umgewandelt werden!

Bisher wurde kein Vorgang beobachtet, welcher dem Prinzip der Energieerhaltung widersprechen
wiirde. Es ist offenbar eines der fundamentalsten Naturgesetze.

Da auch das Universum als Ganzes sinnvollerweise als abgeschlossenes System betrachtet werden
muss, ist die Gesamtenergie des Universums konstant, und zwar seit jeher, also seit dem Urknall.
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Der Energieerhaltungssatz |asst sich wie folgt auf mechanische Abldufe einschranken:

Der Energieerhaltungssatz der Mechanik

Bei reibungsfreien Vorgidngen bleibt die Summe iiber die mechanischen
Energieformen (Epot, Exin, Erot, Er) aller beteiligten Kérper konstant.

Anmerkungen zur Energieerhaltung in der Mechanik
e Zur Erinnerung: Mechanische Energieformen sind Epo, Exin, Eror und EF.

e Der freie Fall ist ein Beispiel fiir einen reibungsfreien Prozess. Bei vernachlassigbar kleinem
Luftwiderstand ist die Energieerhaltung gewdahrleistet. Betrachten wir einen Ball mit der Masse
m, der aus einer Hohe von 2.0 m fallen gelassen wird:

Zustand 1: Beim Loslassen besitzt der Ball noch keine kinetische Energie, da er noch keine
Geschwindigkeit hat. Hingegen verfiigt er dank seiner Hohe iy = 2.0 m iiber die potentielle
Energie Epo,1 (Boden = Nullniveau).

Fallvorgang: Wahrend dem Fallen verliert der Ball sukzessive an potentieller Energie, da seine
Hohe geringer wird. Gleichzeitig steigt seine kinetische Energie an, da er schneller wird.
Die potentielle Energie wandelt sich in kinetische Energie um.

Zustand 2: Genau dann, wenn der Ball am Boden ankommt, ist seine potentielle Energie
vollstandig in kinetische Energie Eyi, 2 umgewandelt worden. Er besitzt keine Hohe mehr.
Hingegen hat er nun die Geschwindigkeit v, erreicht.

Anwendung der Energieerhaltung: Die Umwandlung von potentieller in kinetische Energie
vollstandig ist, solange der Fallvorgang reibungsfrei war. Daraus folgt:

Exinp = Epot1 | Formeln einsetzen
m- v% 2
= 5 =m-g-h | -— und /0
m

= vy = /2" g | Werte einsetzen

= \/2-9.81 N o om=630
kg S

Die formale Losung vy = +/2-g-h;y entspricht iibrigens genau der Gleichung (8) von
Seite 19. Der Fallvorgang ist eine gleichmdssig beschleunigte Bewegung ohne Anfangsge-
schwindigkeit (gmbBoA). Die zuriickgelegte Strecke entspricht der Anfangshohe (s = hy)
und der Fallvorgang lauft mit der Fallbeschleunigung g ab (a = g).

Beim Aufprall schliesslich ist die mechanische Energieerhaltung zuende. Je nach Art des Balles
und des Bodens geht mehr oder weniger mechanische Energie verloren.

Bei einem Gummiball kénnten z.B. pro Aufprall 20 % der mechanischen Energie verloren gehen.
Der Energieverlust tragt zu den inneren Energien des Bodens und des Balles bei (= minimale
Erwdrmung). Ganz deutlich sichtbar wird dieser Energieverlust nach dem Bodenkontakt. Der
Ball erreicht dann nur noch 80 % seiner anfanglichen Hohe.

Interessant sind die Vorgiange wahrend dem Bodenkontakt. Der Ball wird auf kiirzester Strecke
abgebremst, bevor er wieder in Aufwartsrichtung beschleunigt wird. Die verbleibende mecha-
nische Energie steckt fiir einen kurzen Moment komplett in der elastischen Energie des Balls,
denn dieser wird wahrend dem Bodenkontakt zusammengedriickt.
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e Beim VBZ-Bus lasst sich eher zeigen, wie die mechanische Energie im nicht-reibungsfreien
Fall verloren geht. Die vom Motor verrichtete Arbeit Wyjoror Wird zwar zwischenzeitlich zur
kinetischen Energie des Busses. Am Ende ist diese Arbeit allerdings komplett in innere Energie
Eji, der Strasse, der Pneus, der Reifen und der Umgebung iibergegangen. Schuld daran ist die
Reibung. Sie fiihrt stets zur Erhéhung der inneren Energie.

Definiert man als System hingegen den Bus, die Strasse und die ndhere Umgebung zusammen,
so ist dieses System beziiglich der Bewegung des Busses tatséchlich in guter Ndherung (und
iiber einen nicht allzu langen Zeitraum) abgeschlossen. Es gilt die Energieerhaltung. Die che-
mische Energie Echem, Welche vor der Bewegung in Form des Benzins vorhanden war, ist nach
der Bewegung komplett in innere Energie Ej, libergegangen. Dazwischen waren auch andere
Energieformen, wie kinetische und Rotationsenergie, beteiligt.

6.10 Die Definition der Leistung P: “Leistung ist Energieumsatz pro Zeit”

In Prozessen wird Energie umgesetzt. Arbeit muss verrichtet werden oder es wird Arbeit frei, Energie
wird von einem Korper auf einen anderen libertragen oder von einer Form in eine andere umgewan-
delt, etc. Alle Vorgédnge sind mit Energieumsadtzen AE verbunden.

Die Leistung P (engl. power) gibt nun an, wie rasch der Energieumsatz abliuft.

Die Definition der Leistung P

Ist AE der Energieumsatz wahrend der Zeitspanne At, so definieren wir die

Leistung P durch:
AE
P:=—
At

“Leistung = Energieumsatz pro Zeitspanne.”

(31)

Anmerkungen zur Definition der Leistung

e Zur Leistung gehort eine eigene SI-Einheit, das Watt:

E]l J kg-m?
pr=tE i w
[1] s $3
Die Zusammensetzung des Watts aus Sl-Basiseinheiten ist in der Anwendung nicht besonders

wichtig (W = kgs';“z), dafiir umso mehr der Zusammenhang mit der Energieeinheit Joule:

J=W:-s “Ein Joule ist eine Wattsekunde.”

e Mit der Leistungseinheit Watt wird eine weitere, sehr gebrauchliche und grosse Energieeinheit
eingefiihrt, die Kilowattstunde (kWh). Es gilt:

Kilowattstunde = kWh =k - W -h = 1000 - W -3600s = 3600000J = 3.6 MJ

Merke dir: Es sind immer Kilowattstunden (kWh), niemals Kilowatt pro Stunde (kW/h).
Diese Einheit gibt es nicht. Sie ist einfach falsch.

e Je nachdem, welche Art von Energie umgesetzt wird, spricht man z.B. von elektrischer Leistung
P, von Strahlungsleistung Ps, von Beschleunigungsleistung Pg, etc.

e Beim VBZ-Bus konnen wir z.B. die Beschleunigungsleistung im Bewegungsabschnitt 1 berech-
nen (Daten vgl. Seiten 12 und 51):
_ AEgin;  Wpi 20310007

Po = - ) W = 290 kW
B~ A Aty 7.0s 90000 20

55



6.11 Das Maschinenschema und der Wirkungsgrad einer Maschine

Jeder Prozess / jeder Vorgang / jede Maschine wandelt Energie einer ersten Form in Energie einer
zweiten Form um. D.h., es wird eine erste Art von Leistung eingespiesen (— Pj,) und es entsteht
eine ausgehende Art von Leistung (— Poy).

In der Regel wird allerdings nicht nur die “beabsichtigte” Art von Energie ausgegeben, sondern
es entstehen Verluste. Man spricht von einer Verlustleistung Pyerust- Dies wird durch das Maschi-
nenschema des Prozesses, des Vorgangs oder der Maschine verdeutlicht:

Maschi Energieerhaltung
aschine
VOI'g ang P°“[ P in= P out T P Verlust
Prozess
Wirkungsgrad
n = 1;;)ut - 1 S P\;rlust
P Verlust i =

Der Wirkungsgrad n (gr. eta) gibt an, wie gut eine Maschine, ein Prozess oder ein Vorgang darin
ist, eine erste Energieform in eine bestimmte andere umzuwandeln:

Die Definition des Wirkungsgrades 7

Wird bei einem laufenden Prozess die Leistung Py abgegeben, wihrenddem
die Leistung Pi, zugefiihrt wird, so ist der Wirkungsgrad 5 des Prozesses

gegeben durch:
P, out
= 32
ni= 5o (32)

“Wirkungsgrad = abgegebene Leistung pro zugefiihrte Leistung.”

Anmerkungen zum Wirkungsgrad

e Je hoher der Wirkungsgrad, desto besser vermag die Maschine aus der ihr zugefiihrten Leistung
die beabsichtigte Leistung zu erzeugen.

e Hier zwei Beispiele — ein eher gutes und ein eher schlechtes elektrisches Gerat:

Die Verlustleistung hat sehr haufig mit der Abgabe von Warme (innere Energie) zu tun. Es
kommt allerdings darauf an, was man denn als Output-Energieform beabsichtigt hat. Bei einem
Wasserkocher ist z.B. die ans Wasser abgegebene Warme beabsichtigt. Nur die Erwarmung
des Kochers selber und der Umgebung sind nicht gewollt.

e Im 1. Bewegungsabschnitt des VBZ-Busses ist die beabsichtigte Leistung die Beschleunigung.
Bezieht der Bus wahrend diesem Bewegungsabschnitt eine elektrische Leistung von 390 kW
von der Fahrleitung, so betragt sein Wirkungsgrad in diessm Moment:

Pun  290kW
= = =074 = 74%
Py 390kW v
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6.12 Energieproblematik und elektrischer Energieverbrauch im Alltag

Die Energieerhaltung besagt, dass Energie weder erzeugt, noch vernichtet werden kann. Daraus
kdnnte man filschlicherweise folgern, dass stets geniigend Energie vorhanden ist und wir uns keine
Sorgen um unsere Energieversorgung zu machen brauchen. Das ist so allerdings nicht richtig. Der
Grund dafiir liegt in den Eigenschaften der inneren Energie:

¢ In der Regel ist innere Energie das energetische Endprodukt aller Prozesse.

Hat z.B. der VBZ-Bus seine Fahrt beendet, so ist praktisch die gesamte elektrische Energie
in innere Energie iibergegangen. (Allenfalls hat der Bus wahrend der Fahrt seine Batterie
aufgeladen oder er hat etwas an Hohe gewonnen, dann wére ein Teil der Energie in Form von
elektrischer resp. potentieller Energie vorhanden geblieben.)

e Innere Energie ist nicht fiir die Umwandlung in andere Energieformen geeignet. Sie
kann nur sehr bedingt zum Betrieb von Maschinen verwendet werden.

Soll innere Energie dazu genutzt werden eine Maschine anzutreiben, so sind dafiir grosse
Temperaturunterschiede nétig. Diese sind aber nicht einfach so vorhanden. Im Gegenteil: Die
innere Energie verteilt sich von selbst iiber alle Kérper gleichmassig. Deshalb kdnnen Sie sich
z.B. an einer Heizung wéarmen. Die Heizung besitzt eine hdhere Temperatur als Sie, weshalb
sie beim Kontakt Warme und damit innere Energie an Sie abgibt — und zwar im Prinzip so
lange, bis Sie dieselbe Temperatur wie die Heizung haben.

Das Wort Energieverbrauch muss also so verstanden werden, dass hochwertige Energieformen beim
Gebrauch von Maschinen in innere Energie umgewandelt werden. In dieser Form ist die Energie nicht
mehr weiter verwertbar. Daraus ergeben sich zwei Folgerungen fiir das Sparen von Energie:

o Effizienz = grosstmogliche Ausnutzung der Energie

Wir sollten iiberall versuchen méglichst effiziente Maschinen (mit hohen Wirkungsgraden) zu
verwenden. So kann Energie eingespart werden.

¢ Suffizienz = geniigsame Nutzung der Energiereserven

Wir sollten uns iiberlegen, ob wir wirklich so viel Energie benétigen, wie das heute der Fall ist.
Einschrankungen waren an vielen Orten denkbar und sinnvoll.

Insbesondere aus 6kologischen Griinden méchte die Schweiz méglichst rasch die 2000 Watt-Gesellschaft
realisieren. Das hiesse, die Schweiz wiirde insgesamt so viel Energie verbrauchen, dass herunterge-
rechnet auf einen einzelnen Menschen eine andauernde Bezugsleistung von 2000 W herauskdme. Im
Jahr 2022 hat die Schweiz ungefdhr eine pflegen wir eine 3600 W-Gesellschaft gepflegt. Da sollte
also unbedingt noch etwas passieren!

Personliches Energierechnen punkto Verbrauch an elektrischer Energie

Auf den meisten elektrischen Gerdten wird angegeben, welche elektrische Leistung P sie im Betrieb
vom Elektrizitdtswerk beziehen. Wird das Gerét iiber eine Zeitspanne Ar verwendet, so betrdgt der
Energieverbrauch: AE = P - At.

Das Elektrizitdtwerk rechnet die bezogene elektrische Energie in der Energieeinheit Kilowatt-
stunde kWh ab. Das Rechnen damit ist sehr einfach! Der Normaltarif in der Schweiz betragt zurzeit
knapp 20 Rappen pro kWh.

Beispiel: Ich lasse den CTouch-Bildschirm (360 W) wihrend einer Lektion (45min = 2h) einge-
schaltet: 3
AE = Pg - At =360W - Zh =270 Wh = 0.27kWh

Die Schule muss dem Elektrizitatswerk dafiir etwa 5.4 Rappen bezahlen (20-0.27 = 5.4).
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